GENERAL PHYSICS 1

by
Prof. Dr. Huseyin CAVUS



Course Necessities

It 1s aimed that the students to learn and apply basic concepts of mechanics.

Each week the first course day is going to be assigned for lecturing and the second for
recitation.

Grading will be done according to following criteria: 40% of Mid-Term + 60% of Final

Do not hesitate to ask question during the class. It might be helpful to understand subject
better not only for you but also for your peers.

Each student should have a functional calculator (since it will be used in the coming
years preferably CASIO)

Attendance to 70% of lecture is required
Office # 350



Course Content

Physical Units and Metric Prefixes

Vectors and Vector Operations

One / Two Dimensional Motion

Newton’s Laws of Motion

Work-Energy Principle and Conservation of Energy
Momentum

Angular momentum

Static Equilibrium



Textbooks

Physics for Scientists and Engineers/ John W. Jewett ; Raymond A. Serway
Fundamentals of Physics/ David Halliday ; Robert Resnick, Jearl Walker.
Physics : Principles with Applications/ Douglas C. Giancoli.

University Physics/ Hugh D. Young ; Roger A. Freedman.



PHYSICAL UNITS
&
METRIC PREFIXES



Physical Units

Mechanics 15 the branch of physics n which the basic physical unts are developed. The logical
sequence 15 from the description of motion to the causes of motion (forces and torques) and then to
the action of forces and torques. The basic mechamcal units are those of

MASS, LENGTH, & TIME

All mechanical quantihes can be expressed i terms of these three quantities. The standard unts are
the Systeme Internationale or ST untts. The primary ST unts for mechanics are the kilogram (mass),
the meter (length) and the second (tme). However of the units for these quantiies i any consistent
set of units are denoted by M, L, and T, then the scheme of mechanical relationships can be
sketched out.



Length metre (m), centimetre (cm), kilometre (km), foot (ft), inch (in)
Mass kilogram (kg), gram (g)

Time second (s), minute (min), Hour (hr)

( meter - kilogram - second = MKS system )

Conversion factors:

Length
1m =100 cm = 0.001 km = 3.28 ft = 39.37 in

Mass
1 kg =1000 g

Time
1 hr = 60 min = 3600 s



The Chain of Mechanical Quantities

w divided b
cquais ST1Me

Restrictions, qualifications

w divided by

With direction, displacement
over time gives average
velocity.

equals

times Acceleration

Change in velocity over time
gives average acceleration

@ equals
@ times

Actually gives net external
force if mass is constant.

S C
divided by
equals

Force x length in direction of
force, if these quantities constant.

D

Average power




Length|L| }— E3 |k
@"""e" TmelT) joes{ Speed |3 which with
by = direction becomes
the rate of
@ change of
times Acceleration velocity is
Development of
| 1 : when multiplied
mechanical units  gwes | "}
rate of
doing work ,
rate of | using
times )
leverarm  times distance
moved
Same combination of units
but completely different eng:l &

quantities.



Basic Mechanical Units
Sl Units (MKS)  (CGS) ~U.S. Common

Length (L) meter (m) centimeter (cm) foot (ft)
Time (T) | second (S) | second (S) | second (s)
Mass (M) kilogram (kg) gram (gm) slug
Velocity (L/T) m/s cm/s ft/s
Acceleration (L/T2) | m/s® | cm/s | ftis 2
Force (MLsz) .kg mlsz=Newton(N). gm om/s= dyne 'slug ft/s=pound(lb)
Work (ML2/T 2) | N m = joule (j) | dyne cm = erg | b ft = ft Ib
Energy MY | e | e | fib

Power (ML2/T 3) J/s = watt (W) ergls ft Ib/s




Dimensional Analysis

Hawving the same units on both sides of an equation does not gaurantee that the equation 1s correct,
but having different units on the two sides of an equation certainly gaurantees that it 1s wrong! So it
1s good practice to reconcile units in problem solving as one check on the consistency of the work.

Units obey the same algebraic rules as numbers, so they can serve as one diagnostic tool to check
your problem solutions.

For example, in the solution for distance in constant acceleration motion, the distance is set equal to
an expression mvolving combinations of distance, time, velocity and acceleration. But the

combination of the units in each of the terms must yield just the unit of distance, since the left hand
side of the equation has the dimension of distance.

1 1 n -
Yom + vy g ts +5a O

y m

2
Yo M1+ vy 1)t t;’+la;}t P

y 1 >

Combinations of units pervade all of physics, and domng some analysis of the units 1s common
practice. For example, in the case of centnipetal force, it 1s not immediately evident that the quantity
on the nght has the dimensions of force, but it must. Checking it out:

~ ; 2
Centriperal . A
force: /i — n
: r
.
. n/s)-
Units N = kg ( )" kg m/s 2

I



Metric prefixes are pretty easy to understand and very handy for metric conversions. You don't have to know the nature of a unit
to convert, for example, from kilo-unit to mega-unit. All metric prefixes are powers of 10. The most commonly used prefixes are
highlighted in the table.

1021 1,000,000,000,000,000,000,000
1018 1,000,000,000,000,000,000
1019 1,000,000,000,000,000
1012 1,000,000,000,000
1,000,000,000
105 1,000,000
103 1,000
102 100
10
101 0.1
102 0.01
103 0.001
106 0.000,001
0.000,000,001
1012 0,000,000,000,001
10°19 0.000,000,000,000,001
10718 0.000,000,000,000,000,001
1021 0.000,000,000,000,000,000,001
10-24  0.000,000,000,000,000,000,000,001
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Conversions of area and volume units

Area Units

1m =100 cm

(1m) ?=(100cm) 2— 1 m?=10000 cm? = 10%cm?
1m =1000 mm

(1m) 2=(1000mm) 2—— 1 m?=1000000 mm? = 10® mm?
1cm=10“m

(1cm)2=(10?m)°__, 1cm?=10"*m?
1mm=10-3m

(1Imm)?=(10-°m)2__ 1 mm?=10°m?

That is,

* m?tocm? multiply by a factor of 10*

e cm?to m? multiply by a factor of 104

* m?to mm? multiply by a factor of 10°

* mm?to m? multiply by a factor of 10



Volume Units

1m =100 cm

(1m)3=(100cm) 3 1 m3=1000000 cm3 = 10°cm?3
1m =1000 mm

(1m)3=(1000mm) 3 1 m3=1000000000 mm?3 = 10° mm3
1cm=10“?m

(1cm)3=(102m)3 1cm3=10°m3

1mm=10-3m —

(1mm)3=(103m)3 1 mm3=102m3

e ——————— e ———————————

That is,

* m?3tocm3 multiply by a factor of 10°

* cm3to m3 multiply by a factor of 10°

* m3to mm?3 multiply by a factor of 10°
 mm?3to m3 multiply by a factor of 10~



Example 1: Convert the following units

1 tera = ... mikro
0.3 kilo = . mili
0.7 giga = ... Piko
0O.5mega = ... nano
0.6 mili = mikro

1 mikro = ... piko



Anwers of Example 1

1 tera = 1x10* mikro
0.3 kilo = 0.3x10° mili
0.7 giga = 0.7x10% Piko
0.5mega = 0.5x10%* nano
0.6 mili = 0.6x10° mikro

1 mikro = 1x10° piko



Example 2: Convert the following units

1 mikro = ... tera
0.3 kilo = ... mega
0.7 nano = ... giga
0.5 nano = e tera
0.6 mili = tera

1 mikro = ... kilo



Answers of Example 2

1 mikro = 1x1018tera
0.3 kilo = 0.3x10° mega
0.7nano  =0.7x10* giga
0.5 nano = 0.5x102! tera
0.6 mili = 0.6x10" tera
1 mikro = 1x10°kilo



Example 3: Convert the following units

100 m? =.... CM?
100000 cm? = ..... m?

0.5 m? = ... mm?
100000 mm? = m?
10 m3 =....cm3
1000000 cm? = ... m?3
0.5 m3 = ... mm?

1000000 mm?3 = m3



Answers of Example 3

100 m? = 100x10% cm? =10° cm?
100000 cm? = 100000x10* m? =10 m?
0.5 m? = 0.5x10®° mm?=5x10> mm?
100000 mm? = 100000x10°® m?=0.1 m?
10 m3 =10x10° cm3=107 cm3
1000000 cm3 =1000000x10°m3 =1 m3

0.5 m3 = 0.5x10° mm3= 5x10% mm?

1000000 mm? =1000000x10° m3=0.001 m?=103m?



Conversion of quotient units

Example 4: Convert the following units

100 m/s =....cm/s
1 cm/h = . m/s
10 m/s? = ....Ccm/s?
0.1 cm/h? = ..... m/s?
10 kg/m?3 =...g/cm3

0.1g/cm® =... kg/m?3



Answers of Example 4

100775 100 em _ 15600 €7 — 19+ S
S 1 m S S
jemy A Am o109 ™
hr 3600s 100cm S
1022, 199€ _ 1600 <2
S 1m S
o, o dhr L dm 00 €
hr 3600s 3600s 100cm S
3
1048, 1999¢  __Im 44918
m lkg 1000000cm cm

3
0.1 g3 " lkg y 1000003()cm _ IOOk—g3
cm- 1000g Im m




Basic Vector Operations

Both a magnitude and a direction must be
specified for a vector quantity, in contrast to a
scalar quantity which can be quantified with
just a number. Any number of vector
guantities of the same type (i.e., same units)
can be combined by basic vector operations.



Content

can be
include Vector muliplied
Operations e
Resolution into ek
components multiplied Vector
and the with a Product which is
reverse st
Calculation of @
polar form
s R which is used and
used in

in calculation of
Magnetic
Addition 2
of vectors Graphical

Addition



....................

.............................................

.............................................

.......

- Ay =Acos 0O

Vectors are resolved mnto
components by use of the tnnangle
trig relationships. You may change
the length or angle of the polar
form of the vector, and the
components will be calculated
below.

For vector ﬁ..=;1 0
.N =
at angle 30 ' degrees,

the honzontal component 1s

=8.66025403 | N

and the vernr:al comp onent 1S
=14.99999999 N

The input to the boxes for units is

arbitrary, they serve to emphasize

that the process of vector addition

1s independent of the units of the

vector.



Graphical Vector Addition

Adding two wvectors & and B
graphically can be wisualized hike

two successtve wallcs, with the

; Vector addition = M vector sum being the vector

........... R N L. . . .

A+ B =R i) distance fromm the beginmng to the
3. Drawalnefromthe TN end pomnt. Eepresenting the vectors
bBaginning of A to the I Pooror
o o B The angle can 555 5@ bt b
be measuraed, and the I P4 d 4
size of P detomined 1 #% T [ T
Lol A A = [ R R

by arrows drawn to scale, the
beginming of wector B 15 placed at

: the end of wector A The vector
. g sun B ocan be dravwn as the wector
_ it g e ginming to the end poit

e e -----*'-.---- - 1|:| E..E_EIEE_1E|'I||-|.E
P31 F te: P2 i g : elhasndol The process can be done
Lo gr oo g T waclorA,

oy mathematically by finding the

T T Ameseale, TR combining to form the components

of B, and then conwverting to polar
torin.




Magnitude and Direction from
Components

------------------------------------------------------------------

.............................................

....................

..................................................................

ﬂ) L]

..................................................................

::::::::::::::::::::

...................

If the components of a vector are known,

then its magmtude and direction can be
calculated with the use of the Pythagorean

relationship and tnangle trig. This 1s called
the polar form of the vector.

If the honzontal component 1s

and the vertical component 1s

then the magmtude 1s
=6.40312423

and the angle 1s
= |38.6598082 | degrees.



A =12 at 20°
B = 25 at 60°

|=t 3505at4?8°

Polar Form Example

Ax = Ax+ By =

23.8

Atter finding the components for the

wectors A and B, and combiune them
to find the components of the resultant
vector B, the result can be put in polar

form by

Ry= Ay+ By =11.3 +12.5 =23.8
H},.= AF+ Ey. = 41 + 21.7 =25.8

Fl:"‘jl:li+ H$

R =4/23.8% 4+ 2582 = 35.05

6 = tan"!' B¥Y = tan! 1.084
Ry
0 = 47.3°

—otnie caution should be exercised in
evalnating the angle with a calculator
becausze of ambimuties in the
arctanoent on calculators.




Vector Addition, Two Vectors

Yector addition mwvolwves finding
wector components, adding them
and finding the polar fortm of the

resultant.

Vector addition = s  The addition of vector
- A ™ M= o A=z at |45
degrees,

and vector

E=1%& at | 30

degrees,

welds components:

g3.486281 |+ 12.949038 | = |21 .4756R
. a.486281 | + 2. .49494499 | = |16 498524
MNumber of vectors H I:I 3 I:Id' The resultant has ma_gtumd_e

E = 26.7718751¢

and angle
= |36.6R19339¢ degrees.




Vector Addition, Three Vectors

Wector addition mwolves Anding
wector components, adding them
atid fnding the polar formm of the
resultant.

The addition of wvectors
MA=15 at | 30
- Vector addition @ degrees.
- A+B4+C=R i JBNUNRERN BN B2 at |45
SO D D OO0 S DO O O SO U P A A SO SO O I degrees,and
U0 OO OO O DO O O OO 0 0P 20 P~ o o - R = R at | 60|
NNV RO SO degrees

welds components:

: A, + B, + C. =R,

et TN [1z.99038| + 8485281 | + |5.000000

I IIIIONGE T = [26.47566

: A}r 5 B.:.,. 4 Gy: H.:.,.
Number of vectors [12 B3 [ 4 7.499999| + |5.485281 | + |5.660254

= Z4.b4553

The resultant has magnitade
E = |361713023¢

atid angle
= |42 .94996999%| degrees.




Scalar Product of Vectors

The scalar product and the vector product are the two ways of multiplying wvectors which see the
most application i physics and astronomy. The scalar product of two vectors can be constructed
by taloing the component of one wector in the direction of the other and rultiplnng it times the
magnitude of the other wvector This can be expressed i the form:

=

— - —=
‘B=ABcos#H A A denctes vector

_..
B B Jﬂ'n. denclas the magniluda
of the vectar.

It the vectors are expressed m terts of unit wectors 1, 4, and k along the %, v, and z directions, the
scalat product can also be expressed m the form:

AB=AB, + A B + A,B, we

The scalar product 15 also called the “inner product” o the "dot product” in some mathematics
texts.



Scalar Product Calculation

Tou may enter values i any of the boxes below Then click on the symbol for either the scalar
product or the angle. The wectors & and B cannot be unambiguously calculated from the scalar
product and the angle. If the angle 15 changed, then B will be placed along the x-ams and A in the

xv plane.

A ctive formula: please chick on the scalar product or the angle to update calculation.

A-B =AB cos 0

The scalar product | A B =k (e ilcos (45 1 degrees.

A B will be placed on the x axis and both A and B in the
0 _"E xy plane unless otherwise specified below.

A= 42426406 |4 42426406 r+ 0 Kk
— e s e
B= |12 i+ |0 j+ [0 K

A-B — (4242640)(12 (] 4.242640 (|0 14 0 30 = (AR



Scalar Product Applications

Geometnically, the scalar product 1s useful for finding the direction between arbitrary vectors i
space. =ince the two expressions for the product:

AB=AB, + A B + A,B,=AB cos 0

mvolve the components of the two vectors and since the magnitudes A and B can be calculated
from the components using:

2 2 2
A= AL +Aj +A3
then the cosmne of the angle can be calculated and the angle determined.

One mmportant physical application of the scalar product 1s the calculation of work:

F W =F-d=Fcos 0 d
0 a" Work done by constant fores,
slraight line molion.



Vector Product of Vectors

The vector product and the scalar product are the two ways of multplying wectors
which see the most application i physics and astronotny. The magnitude of the
wector product of two wectors can be constructed by taking the product of the
tagtitudes of the wectors tines the sine of the angle (<150 degrees) between thetn.
The magmtide of the wector product can be expressed i the form:

— . .

— = A X B B e A X B is pampendicular

AxB =ABsin0 A o both A and B
rragnilude

atid the direction 15 given by the right-hand mile. If the wectors are expressed in terms
of unit wectors 1, 1, and k in the x, v, and z directions, then the wector product can be
expressed m the rather cumbersome form:

AxE_l{AE A;B,) - {AE AE,:}+H{AE -A,By)

which may be stated somewhat more compactly in the form of a deterrminant.




Vector Product Calculation

Tou may enter walues in any of the boxes below, Then click on the symbol for either
the wvector product or the angle.

AxB=ABsin 6

The wector product | AxB =115 (16 NSRS )

degrees.

—= —= —
AxB B — B will be placed on the x axis and both A and B
) A in the xy plane unless otherwise specified below.

— = = Fa
A= 10.606E0T| j 4 [10.60BROT j + I ke
— - i o
B= |16 i+ [0 j+ [0 k
AxB = 0 i+ (O l + [-1b3.705E |
_F':x §= AxB magnitiide.



Enample Find the resultant vector of A and B given in the graph below. {gin30%=1/2,
sinB0°%=+3/2, 5inf3°=4/5, cosh3"=3/8)

Y
8 A A
¢ 60"
2 /530 X
B
W




WWe usze trigonometric equations first
and find the components of the
vectors then, make addition and
subtraction between the vectors

sharing same direction,

8 A
) 60"
5 /530 s
B
Ao
Components of A Components of B;
Ax=A.cos60" Bx=B sin53°
Ax=8.1/2=4 Bx=5.4/5=4
Ay=A.sin60° By=B.cos53°
Ayzﬁ.\% =4/3  By=5.3/5:3



We sum the vectors having same

AT,

direction: |
T, We put "-" in front of Bx,
and By because we take
Ay+By=4\/3 -3 right side and upward
X direction as positive

Ay+By

B AA
4\/3 -3
UEI

>

745”
B




Find resultant of the following forces acting an an object at paint P in figure

given below:




e add all vectros ta find resultant force. Start with vector A and add vector C to it
After that, add vector D and C and draw resultant vector by the starting paint to the end.

Examine given solution below, resultant force is given in red color,




Find A+B+C.

A




First, we find A+B then add it to wector C.

We find B4, now we add Cto R4 to find resultant vector,

HE=A+B +




Find resultant vector.




Since: A+B=E and C+D=E
F=A+B+C+0D+E
F=E+E+E=3E



A and A+2B vectors are given below. Find vectar B.

A

A+PB




We use vectar addition properies.
A+2B-A=2E

AH2B
2B

Pd

To get vectar B, we multiply 2B with 1/2.




Find resultant vector,

3N

60°

oN



3N

EJ\I 60°

Fq+F2=5-2=3N

F1 +F2 +F3= FH=aMN



Which one of the following statements 15 true?

AN




)

E :

. A=E in magnitude
Il A=2C
. E=2D0
1. A=B

As you can see in the figure given abave, A and B are equal in magnitude, sa |, is true.
If you multiply C with 2, you get A, this means that Il. is also true
E =20 in magnitude but not in direction. Thus; Il 15 false.



SOME EXAMPLES
on
UNIT CONVERSIONS and VECTORS



10
75
45
15
33
15
75
30
50
20

Unit Conversions

meters x 3.28 =328 feet

centumeters X .3937 = 295275 1nches
miles x 5280 = 237600  feet

miles x 1609 =2a133  meters

Newtons X .2248 =74184  pounds
Newtons x 100000 = 1500000 |dynes
kilograms x 06852 =513 gslugs
meters/sec X 2.24 = ez miles/hour
km/hour x 0.278 = [13.9000000(meters/sec
atmosphere x 101.3 =026  kilopascals




. o 2
i atmosphere x 14.69 =745 Ib/in

s 2 eq -
20 Ib/in"x51.7=hoe  mmHg
f 4
soo0 mmHg x 1333 =esesoo0  [dyne/cm
A nle
00 dynes/cm™x 0.1 = a0 pascals
T mmHg x 133 .3 = 7331 so000cpascals
oo jem?x 000001 = Im?
T 3
goo0 1”0 X 0000163 =065z I
A 3
45 N~ X 16.39 = 737550000011
3. 3
950 ft" x 02832 =534 m

56 hiters x 001 = [n.gse 1113



10 cm/h?

100 kg/m3 .g/cm3
10— Lhr _ _Lhr  _1m = 772x10™" =
hr= 3600s 3600s 100cm S
3
IOOkg- IOOOg Im _01.8

m’  lkg IOOOOOOcnf cm’



0.05 mega = ........ nano

6 mili = mikro
0.05 mega = 0.05x10**> nano
6 mili = 6x10° mikro

7 nano  =...... giga

50 nano =....... tera

7nano =7x107"giga
50 nano =50x107! tera



Resolving a Vector Into Components

For wector A=ED]
[

at atgle |30 degrees,

the horzontal component 15
= 43527078 | M

atied the vettical component 13
= | 249959949555 M




Resolving a Vector Into Components

For wvector A=HR0
[

at atgle |45 degrees,

the honzontal component 15
= 3536633908 N

atid the wertical component 15
= |35.36633908| M




Resolving a Vector Into Components

............................................. : F'Z}I' TeCtor .I.II:II.I.= =l
............................................. E.ddod, N
' ' at angle |G degrees,

the honzontal component 15
= b 0000000C}H M

atidd the vertical cotponent 13
= 433072707} [N




Magnitude and Direction from
Components

If the honzontal cotmponent 15

=3 [
atid the wvertical component 15
= 4 [

then the magnitiude 15
=5 [

atid the angle 1z

= 53.1301023%| degrees.




Magnitude and Direction from
Components

=4 [l
and the vertical component 1s
=4 [l

then the magnitude 15
= h bhbER4Z4L| (M

atd the angle 15
= |45 degrees.




Magnitude and Direction from
Components

If the honzontal component 15

= 4 [
aticd the wertical component 15
=3 [

then the magritde 15
=5 [

aticd the angle 1s

= | 36.8698976¢| degrees.




Vector Addition, Two Vectors

A+ B

: The additicn of wector
R s ASS at |30

Jdegrees,
and wector
E=4 at | 135

degrees,

wields components:
A, + B, =R,
4330127 |+ -2.828427 = 1 501699
Ay + B, = R,
2499999 | + 2.828427 | = h.328427

The resultant has magmitude
E = 55364084 77C

atid angle
= | 74.2606780F degrees.



Vector Addition, Two Vectors

vEﬂtﬂ'rﬂdd I'[IGI"I ottt The addition of wector
Vel g on ... . I .

A+B=R

degrees,
and vector
E=4 at k[

wields components:
433077 |+ (2000000 = b.330127
-2 49959 + (3. 4647107 | = | 0.964101

The resultant has magmitude
E = 6403124235

atid angle
= |8.65980825¢| degrees.




Vector Addition, Three Vectors

Mumber of vectors [ ]2 3 [4

The addition of vectors

LA=10 at | 30
degrees,

BE=25 at |10
degrees, and

=30 at | -45|
degrees

wields components:

A, + B, +C,=R,
g.bb02hd | + |[-12. 4999 + 21 21320
= [17.37345

Ay, + B, +C,= R,

4. 999999 | + |21 65063 | + |-21.21 32
= |b. 437431

The resultant has magmtude
E = |18.2044658¢

and angle
= |[17.3787367¢| degrees.



Vector Addition, Three Vectors

The addition of vectors
e A L e B S S S S G U at |-60
- Vector addition 5l g 0 degrees,
. A+B+C=R o0 B=zs at |30
CLEEIIEENONNNE T odan 13
O et degrees

welds components:

kg bbb b A.+ B, +C.=R,

e B e 00000 + (21 65063 | + 21 21 320

! N ‘n"‘,f'*'E-_-..-"‘G-_.,.-:H-_.,.-

-g.6b0Z5:| + 1249999 |+ Z1.21 320
= |25.052594

The resultant has magmtude
E = 25.6362231:

atid angle
= 77.7R4R797( degrees.

MNumberof vectors [ ]2 a3 [a



Vector Addition, Four Vectors

*’A 2

Numberofvectors [ ]2 []3 4

The addition of wectors

A=10 at |30 degrees,
E=15 at |-G degrees,
=12 at (135 degrees,
D=z0 at | 45| degrees,

wields components:
A.+B,.+C +D, =R,
0. bb0Z54 4+ 7 500000+ -5. 485268 H
14142153=21.817110
Ay+B, +C,+D, = R,
4 9995999 +-12 9905+ 5. 4857281 +

14.14213=14.63703

The resultant has magmitde
E =|26.2722103:

atid angle
= |33.8575480( degrees.



Vector Addition, Four Vectors
The addition of vectors

TET e N toarees.
EEC_t}UI'_Ejdd't'U” B WOy at | 120 degrees,

;:::A+B+C+ :=:I::l::::g::::g::::@::::g::::g::::g::::g::::g ey at (60 e —
# D= 30 -+ B0 degrees.

;,, sields components:

5 A+B.+C +D.— R.
1414213 H-7.49999¢+ 9. 000000 +
15.00000= 30.64213

Ay+B, +C,+D, = R,
~14.1421;+ 1299038 + 165 58845 +

25 98078 =-11.5440¢

The resultant has magnitude
E. =32 7445534¢

atid angle
= | 339.356R97F degrees.

Mumber r:-f vectors |:|2 (13 [Wf%



QI.1
What are the x—

and y—components
of the vector

E?
AE =Ecos pE =Esinf
B.E =Esin 5 E =Ecos

x C.E=-Ecosf E,=-Esinf

D.E =-Esin fj, E, =-Ecos 8

E.E. =-Ecos B, E,=Esin s
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Al.l
What are the x—

and y—components
of the vector
E?
AE =Ecos pE =Esinf
JB.EX:Esin,B, E,=E cos 8
* CE=-Ecosf E,=-Esin [

D.E =-Esin fj, E, =-Ecos 8
E.E. =-Ecos B, E,=Esin s
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Q1.2

Consider the
vectors shown.
Which is a correct
statement about

A+ B?

A. x—component > 0, y—component > O

¢(120m) A (8.00 m) B. x—component > 0, y—component < 0
C. x—component < 0, y—component > 0
D. x—component < 0, y-component < 0

E. x—component = 0, y—component > ()
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Al.2

Consider the
vectors shown.
Which is a correct
statement about

A+ B?

X

J A. x—component > 0, y-component > O
€ (120m) A (8.00 m) B. x—component > 0, y—component < 0
C. x—component < 0, y—component > 0
D. x—component < 0, y-component < 0

E. x—component = 0, y—component > (
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Q1.3

Consider the
vectors shown.
Which is a correct
statement about

A-B?

A. x—component > 0, y-component > 0

¢(120m) A (8.00 m) B. x—component > 0, y—component < 0
C. x—component < 0, y—component > 0
D. x—component < 0, y-component < 0

E. x—component = 0, y—component > (
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Al.3

Consider the
vectors shown.
Which is a correct
statement about
A-B?

A. x—component > 0, y—component > 0

B. x—component > 0, y—component < 0

C. x—component < 0, y—component > O
J D. x—component < 0, y—component < (

E. x—component = 0, y—component > ()

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q1.4

Which of the following statements is correct for any two vectors
A and B?

A. the magnitude of A+B isA+B
B. the magnitude of A+BisA_B
C. the magnitude of A+ B is greater than or equal to |A — B

D. the magnitude of A+B 1s greater than the magnitude of A-B
E. the magnitude of A+B i JA® + B

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Al.A4

Which of the following statements is correct for any two vectors
A and B?

A. the magnitude of A+B isA+B
B. the magnitude of A+BisA_B
J C. the magnitude of A+ B is greater than or equal to |A — B

D. the magnitude of A+B 1s greater than the magnitude of A-B
E. the magnitude of A+B i JA® + B

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q1.5

Which of the following statements is correct for any two vectors
A and B?

—

A. the magnitude of A —

cm

1ISA—-B

D>l
wl

B. the magnitude of 1ISA+B
C. the magnitude of A—B is greater than or equal to |A — B
D. the magnitude of A-B s less than the magnitude of A+B

E. the magnitude of A—B is VA + B?

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Al.5

Which of the following statements is correct for any two vectors
A and B?

—

A. the magnitude of A —

cm

1ISA—-B

D>l
wl

B. the magnitude of 1ISA+B
J C. the magnitude of A—B is greater than or equal to |A — B
D. the magnitude of A-B s less than the magnitude of A+B

E. the magnitude of A—B is VA + B?

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q1.6

y Consider the vectors
B (15.0 m) shown.
What are the
D (10.0 m) components of the vector
E=A+D?
M A E =-800m, E =-2.00m
B.E, =-8.00m, E = +2.00 m
¢ (12.0m) A (8.00 m) C.E.=—6.00m,E,=0

D. E_=-6.00 m, E = +2.00 m

E.E.=-100m, E,=0
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Al.6

y Consider the vectors
B (15.0 m) shown.

What are the
components of the vector

E=A+D?
- A E=800mE=—200m

D (10.0 m)

B.E,=-8.00 m, E, = +2.00 m
¢ (12.0m) A (8.00 m) C.E.=—6.00m,E,=0
D. E_=-6.00 m, E = +2.00 m

E.E.=-100m, E,=0

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q1.7

y Consider the vectors
E (15.0 m) shown.

What 1s the dot product

D (10.0 m) CeD?

A. (120 m?) cos 78.0°

B. (120 m?) sin 78.0°
C. (120 m?) cos 62.0°
D. (120 m?) sin 62.0°

C (12.0 m)

E. none of these
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Al.7

y Consider the vectors
E (15.0 m) shown.

What 1s the dot product

D (10.0 m) CeD?

A. (120 m?) cos 78.0°

B. (120 m?) sin 78.0°

J C. (120 m?) cos 62.0°
D. (120 m?) sin 62.0°

C (12.0 m)

E. none of these

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q1.8

y Consider the vectors
E (15.0 m) shown.

What 1s the cross product

D (10.0 m) AxC?

A. (96.0 m?) sin 25.0° k
B. (96.0 m?) cos 25.0° k
C. ~(96.0 m?) sin 25.0° k
D. —(96.0 m?) cos 25.0° k

C (12.0 m)

E. none of these
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Al.8

y Consider the vectors
E (15.0 m) shown.

What 1s the cross product

D (10.0 m) AxC?

A. (96.0 m?) sin 25.0° k
B. (96.0 m?) cos 25.0° k

C (12.0 m) C. —(96.0 m?) sin 25.0° k

J D. —(96.0 m?) cos 25.0° k

E. none of these
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Q1.9

Consider the two vectors
A=3i+4j
B=-8i+6j

What is the dot product A®B?

A. zero
B. 14
C. 48
D. 50

E. none of these
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Al.9

Consider the two vectors
A=3i+4j
B=-8i+6j

What is the dot product A®B?

J A. zero

E. none of these
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Q1.10

Consider the two vectors
A=3i+4j
B=-8i+6j

What is the cross product AxB?

A. 6k
B. —6k
C. 50k
D. ~50k

E. none of these
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Al1.10

Consider the two vectors
A=3i+4j
B=-8i+6j

What is the cross product AxB?

A. 6k
B. —6k
J C. 50k
D. ~50k

E. none of these

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Ql.11

Consider the two vectors
A=3i-4j
B =6k

What is the dot product AeB?

A. zero
B. -6
C.+6
D. 42
E. 42

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Al.11

Consider the two vectors
A=3i-4j
B =6k

What is the dot product AeB?

J A. zero

B. -6
C.+6
D. 42
E. 42
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Q1.12

Consider the two vectors
A=3i-4j
B =6k
What is the cross product AxB?
A. zero
B. 241 +18j
C. —24i —18j
D, —18i +24j
E. —18i —24j
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Al.12

Consider the two vectors
A=3i-4j
B =6k

What is the cross product AxB?

A. zero

24i +18)

B.
~/c. —24i —18
D.

~18i +24j
g —18i —24j

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



MOTION

Definition of Motion: Change in position of an object with respect
to time.

More About Motion:
A moving object changes its position as the time passes/changes.

In general motion is described as the movement of object.

Objects which are moving will not be at a same position after
certain interval of time.

When the object remains at same position after certain interval of
time then the state of the object is known as “rest”.

In physics, motion is a change in position of an object with respect
to time and its reference point. Motion is typically described in
terms of displacement, direction, velocity, acceleration, and time



Change in position of an object with time is
measured with the units of distance. It
describes the speed of an object. (How fast or
slow an object is moving.)

General types of motion: Circular motion,
Periodic motion, Translatory motion.

Examples of different types of motion:

1. Translatory Motion: March-past of soldiers in
a parade

Motion of a stone dropped from a building.

2. Circular Motion: Blades of an Electric fan
(Switched on).

3. Periodic Motion: “Child on a swing”

“Motion of needle in a sewing machine”.



Position

specibing the posttion of an object 15 essential in describing motion. In one dimension

some typical ways are
::F'{x}

:-:=-III
(Origing

In two ditnensions, either cartesian of polar coordinates may be used, and the use of
unit wectors 18 cotntnon. A posttion vector + may be expressed i tertns of the unit

#i1) 15 used to represent position as a function of time

weCtors.
; S S S
r=x1+%]="rlr Pir, &)
* I:II:::':'-.II:III
ltit:l describes position as
(0,0 — % a function of time

In three dimensions, cartesian or sphenical polar coordinates are used, as well as
other coordinate svstems for specific geometnies.

4 gEF":H,!zl,E:' In cartesian coordinates

....................... . + + + + w
1y r=xi+y]+zk .

b -

The vector chaneoe 10 posthion associated wrath a motion 15 called the displacement.



Displacement

The displacement of an object 15 detined as the vector distance from some iutial
pottit to a final point. It 15 therefore distinctly different from the distance traveled
except in the case of straight ine motion. The distance traveled donded by the time
15 called the speed, while the displacetent dinded by the titne defines the average
veloctty

F * . oo
travel =" “« Ifthe posttions of the wutial and final

---------
-

potnts are known, then the distance
relationstup can be used to find the
displacement

displacerment



Velocity

e average speed of an object 15 defined as the distance traveled dimded by the

itne elapsed. Velocity 15 a wector gquantity, and average welocity can be detined as
e displacement diwided by the tne. For the special case of stragght ine motion in
e % direction, the average welocity takes the form:

displacement _ —
- b P oaMIS Vaverage = ¥ = A2 T X = Ax

(xq,11) (¥, ta) te — 14 At

e units for velocity can be wnphed from the defimtion to be metersfsecond or in
eneral any distance unit over any titne unit.

Tou can approach ah expression for the mstantaneous velocity at any point on the
ath by taling the it as the time interval gets smaller and smaller. Such a miting

rocess 18 called a denwative and the mstantaneous wvelocity can be defined as

hm Ax — dx
At—0 AL dt

“instantaneous =



Average Velocity, Straight Line

The average speed of an obiect 15 defined as the distance traveled dinded by the
hme elapsed. Velooity 15 a vector quantity, and average velocity can be defined as
he displacement dimded by the tine. For the special case of straight line tnotion in
the x direction, the average velocity takes the form

dizplacement _ _ —
. b Py oM Ve = 0 = L .S LY

l::’":-l ,T.1:| ':HEJT.E} tE - t1 ﬂt
[t the begnmng and ending velocies tor this motion are known, and the acceleration

5 constant, the average veloctty can also be expressed as

W W2 _
— —— ! 3415 "'."'an,ferage =N =

For this special case, these expressions give the same result



Average Velocity, General

The average speed of an object 1z defined as the distance trawveled dended by the
tine elapsed. Velocity 15 a wector quantity, and average welocity can be defined as
the dizplacement dinded by the time. For general cases involwng non-constant
acceleration, this defintion must be applied directly because the stragght hne average
velocity expressions do not work,

—..
path of P Y =+ D
travel I "N Yaverage t

warning! The average velocity
is not given by

displacement

since the velocities are vectors in
different directions and the
acceleration is not constant.

It the positons of the witial and final points are known, then the distance relationship
cah be used to find the displacement.




Acceleration

Acceleration 15 defined as the rate of change of wvelocity, A cceleration 13 inherentls
a wector quantty, atnd an object wAall have non-zeroe acceleration it its speed andior
ditection 15 changing. The average acceleration 13 given by

=

= Av VvV, — V
ﬂfn'frﬁgf — o = ﬂ.f £

where the stnall arrows indicate the vector gquantities. The operation of subtracting
the rutial from the final velocity must be done by vector addition since they are
inherently wectors.

The units for acceleration can be implhed from the defindtion to be metersisecond

divrided by seconds, usually written s

The mmstantanecus acceleration at any titme mavy be obtammed by talking the it of
the awverage acceleration as the titne interval approaches zero. This 15 the dernvative
ot the welocity wath respect to time:

~ I; Av dv
a1':?.u'!fu:r.run_*f;ru.ﬂ' T ﬂ.}E] &r T dl“



The Chain of Mechanical Quantities

Restrictions, qualifications

With direction, displacement
over time gives average
velocity.

Change in velocity over time
gives average acceleration

Acceleration




Motion with constant velocity

The simplest type of motion (excluding the trivial case in which the
body under investigation remains at rest) consists of motion with
constant velocity. This type of motion occurs in everyday life
whenever an object slides over a horizontal, low friction surface: e.q.,
a puck sliding across a hockey rink. Figure shows the graph of
displacement versus time for a body moving with constant velocity. It
can be seen that the graph consists of a straight-line. This line can be
represented algebraically as

X=X +Vvt

Fgwe : Graph of displacement versus fime
Jar a hady moving with cansiant velacity



Here x,, is the displacement at time t=0 : this

guantity can be determined from the graph as the
intercept of the straight-line with the -axis.

Likewise,v=dx/dt is the constant velocity of the body:
this quantity can be determined from the graph as
the gradient of the straight-line (i.e., the ratio
v=Ax/At , as shown).

Note that a=d?x/dt?, as expected.



Figure shows a displacement versus
time graph for a slightly more
complicated case of motion with
constant velocity. The body in question
moves to the right (since x is clearly
increasing with t) with a constant
velocity (since the graph is a straight-
line) between times A and B. The body
then moves to the right (since x is still
increasing in time) with a somewhat
larger constant velocity (since the graph
is again a straight line, but possesses a
larger gradient than before) between
times B and C. The body remains at rest
(since the graph is horizontal) between
times C and D. Finally, the body moves
to the left (since x is decreasing with t)
with a constant velocity (since the graph

is a straight-line) between times D and E.




Constant Acceleration Motion

Constant acceleration motion can be charactenzed by formull and by motion graphs.

Starting from rest
at position zero

I
= = {If
Y=3
v=at
a = constant

accelerating at

9.8 m/s’

y

Fosition

Velocity

Acceleration

time —

More generally

y=yﬂ+vﬂr+%aﬁ

Vv=y, +at
Velocity is equal to
the slope of the
position curve.

Acceleration is
equal to the slope
of the velocity curve.



Description of Motion in One Dimension

IMotion 15 descnbed i terms of displacement (), tine (t), velocity (v), and acceleration (a). Velocity
15 the rate of change of displacement and the acceleration 1s the rate of change of welocity, The
average velocity and average acceleration are defined by the relationships:

-.&x -iw

Average velocity: = ﬂ.t Average acceleration: =N n

where the Greek letter A indicates the change in the quantity following it.

Constant acceleration equations.

_ _ V[] 4+ V | A bar above any quantity indicates that it 12 the
1. x=v t V= average value of that quantity. If the acceleration
2 15 constant, then equations 1,2 and 3 represent a
2 v = Uﬂ + at complete description of the motion. Equation 4
15 obtatned by a cotnbimation of the others. Chck
3 X = V[]. t +1§ atz on any of the equations for an example.

4. v° = UDE + 2ax



Forms of Motion Equations

Vo +V
2

1.)(:\?’[ V =

2.V =V, +at

Combining equations 1 and 2 leads to the useful form in equation 3 below.

From1:. X :Et:[""@z_!ﬂt and substituting for v from 2:
X = Eu+_‘£u+_ﬂt t  gives3.:

12
3. X=Vpt +7at



The motion equations for the case of constant acceleration can be developed by integration of the
acceleration. The process can be reversed by taling successive denvatives.

— Maotion relationships in
Position - .
one dimension.

. V=Y, + Vol + %arz
Y=Yy t VI + > ar- _ Derivative
Velocity @ E:I-f pﬂsiti_n::m
d},ls velocity
dr
v =v, +ar

Integrate
velocity to ﬁ
get position

Vv = j.-::.-:!r = v, + at

a Acceleration
Dearivitive

Integrate
accelerationﬁ' | | of velocity is
to get acceleration
velocity tme . v
a = constant a=——=4da
it

_n the left hand side abowe, the constant acceleration 1s imntegrated to obtain the welocity, For this
idefinite integral, there 15 a constant of integration. But i this physical case, the constant of
mtegration has a very definite meaning and can be determmuned as an intial condition on the
movetnent. Note that if wou set =0, then v = w7, the imital walue of the welocity, Likkewrise the farther
mtegration of the welocity to get an expression for the position gives a constant of mtegration.
Checling the case where t—0 shows us that the constant of integration 1s the immtial position z2p. It 1s
true as a general property that when vou integrate a second denvative of a quantity to get an
expression for the quantty, vou will have to prowde the walues of two constants of integration. In
this case thewr specific meanings are the rutial conditions on the distance and wvelocity



Forms of Motion Equations

Vo +V
2

1.K=\_ft V =

2. V =V, +at

Combining equations 1 and 2 leads to the useful form in equation 4 below.

From1: X=Vvt= ["'@gjﬂ t and substituting for t from 2:

2 2
‘"’][” z ‘"'b_] = “2_‘“’0_ which is equation 4:
a a

4. v2 = vﬂz + 2ax



Motion Graphs

Constant acceleration motion can be characterzed by motion equations and by

motion graphs. The graphs of distance, veloctty and acceleration as functions of
time below were calculated for one-dimensional motion ustng the motion equations
in & spreadsheet. The acceleraton does change, but it 15 constant within a given
litne segment so that the constant acceleration equations can be used. For varable
acceleration (1e., contmously changing), then calculus methods must be used to
calculate the motion graphs.

160
120 b '
= Distance
"; B0
0r g
510 15 N %%
: : Time in seconds :
20F
0} Velocity
7 |
£y . . .
> 5 10 30
'||:|.
QD_
- d-
" 2: :
E L Acceleration
g 0 '
. 5 0 1 20 |x %
.2-




160

120)

¥ (m)

B0

40

20

10

v (mis)

-10

20

a (mfsz}

Distance

=

T

5 10 5 2 %0
: = Time in seconds
[ Velocity
- 5 010 %
I Acceleration
i 5 10 5 20 30

Herizontal point
(zero slope) implies
zero velocity.

1ﬁnr
Negative slope
Constant Elﬂtgit indicates negafive
means cons . '
ooty \\ Distance elocly
EX i
” Decreasing slope §
40t indicates decreasing / :
velocity. : Continuing zero
: . Flattening curve || slopa implies
L 1'0 1'5 implies velocity || object is at rest.
Increasing slope | : becoming less :
indicates increasing iﬂme'” seconds negative.
velocity. ' !
0 ' VE|DCil‘Y Negative slope
o~ : implies nagative
E B u acceleration.
S ﬂ . L : T T
= L \ - 5 ;\m 15
Positive slope | | Horizontal line
implies positive : | (zero slope) implies
acceleration. | zero acceleration.
_
% of i
£ | Acceleration
@ 0 ' ' '
i 5 10 15 20 25 30
-E o




Welacity vs. time graph of an abject traveling along a straight line given below:

velocity (m/s)
A

-
o |
(% |

-}

W=
—
LA
L

a) Draw the acceleration vs. time graph,

b} Draw the position vs. time graph of the object.



a) Slope of the velocity ws. time graph gives us acceleration. In first intereal, slope of
the line is constant and negative, thus, acceleration of the object is also constant and
negative. In other wards, object does slowing down motion in positive direction with
negative acceleration,

Slope={0v)/t=-a

In the second interval, slope is constant and positive, so acceleration is also constant
and positive. Object does speeding up moation in positive direction.

Slope={vi0)t=+a

acceleration

m(m.«’s*)
ﬂ _——— |_I
I ! II
I |
L] }
:T i time (s)
cap——




b} In the first and second interval velocity of the object changes constantly thus;
position time graph becomes like in the picture given below:

A position(m)
2X

time (s)




An object is stationary at t=0. Picture given below shows the acceleration vs. time
graph of thiz abject. Find the intervals in which object speeds up in positive direction.

A a(m/s®)
ﬂ ——
| |
| |
I: T : 1 t(s)
0 t 2t 4t 7



IT

ITI t(s)
2t 41 ?

0

Area under the acceleration vs. time graph gives us the change in velocity.

l. In this interval, acceleration i increasing with the time, thus object speeds up with
Increasing acceleration.

Il. In this interval, acceleration of the object is constant, =0 object speeds up
canstantly.

. In this interval, acceleration of the object is decreasing with the time, =0 object
speeds up with decreasing acceleration.

In all intervals, velocity of the object increases.



3. An object is stationary at t=0. Picture given below shows the acceleration vs. time
graph of this object. Find the intervals in which object speeds up in positive direction.

acceleration
i
(m/s?)

time(s)




An object is stationary at t=0. Picture given below shows the acceleration vs. time
graph of this object. Find the intervals in which object speeds up in positive direction.

" acceleration
(m/s?)

ITI

2t 3t time(s)
IT




acceleration
il
(m/s?)

IIT

2t 3t ‘Firne(s)

H
H

I. Object speeds up with increasing acceleration in negative direction.
Il. Object speeds up with constant acceleration in negative direction.

. In this interval, abject slows down with constant acceleration. (acceleration (+),
velocity (-]



Fosition vs. time graph of a car iz given below. In which intervals direction of velocity
and direction of acceleration are same.

-~ x(m)




-1~ x(m)

t {s}
7

We draw velocity ws. time graph using position time graph.

“~V(m/s)

II IIT ¥ (5}




“T~V(m/s)

T IT ITT T\ES)
e
Slope of the velacity vs. time graph gives us acceleration.
Aa(m/s)
a
1 |
i
|
I ITT
: | ‘
i IT ! t(s)
I
|
T
“Jr




An object 1= dropped from 320 m high. Find the time of mation and wvelocity when it
hits the ground. (g=10m/s*)



h=1/2.9.t2 , v=q.t
h=320m

g=10m/s<
320=1/2.10.t
t=Us.
v=1.t=10.8=80m/s



An object does free fall and it takes B0m distance during last 2 seconds of its
mation. Find the height it is dropped. (g=10m/s*)

'@

E hi
! T1(s)
h |
t(s) ?"‘ 60m
V| t=2s
ground |, @.

F
N A A A A A A A



M , tis the time of motion
: h=1/2.9.&2
' hy h,=1/2.9.1,2
: T (5) put t1=t-2 and h-h4=60 in the equation,

h |G 1/2.9.42-1/2.9.11°=60

, A 512 5(t° 4t+4)=60
1(s) ' 60m t=4s
|
4 | | T=2s h=1/2.9.2=1/2.10.42=80m
groun Jr .

L
A R A A A A A A A



An object is dropped from 144m height and it does free fall mation. Distance it travels
and time of motion are given in the picture below. Find the distance between paints
B-C.

A

21(s)

v | H(s)
144

31(s)

"q |
~—7 7 7 7 7 F 7 F 7 77



WWe can draw velocity time graph of object and area under this graph gives us position
of the object.

ﬁV(mK s)

As you can see fram the wvelocity time graph, object travels Sh distance during 2t-3t
which iz the distance between the paints B and C.

All distance traveled is 3h
144m=36h
h=4m

Distance between B-C=5h=5.4m=20m



Look at the given picture below. Object K does free fall motion and object B thrown
upwiard at the same time. They collide after 2=, Find the initial velocity of object B.

(g=10m/s")
A

B ground



Cbject A does free fall motion
h,=12.10.22=20m
h =vy.t-1/2.9.6
h =v;.2-12.10.2
h =2v-20
hy:;+h =80m
20m+h =80m
2w -20=60m

vi=40m's



ONE DIMENSIONAL
MOTION EXAMPLES



Motion Example

Tnitial weloctty =10 s, Final velocity =4 115
Y Equations of mation
0 v — — Wy +V
1. x=vt v=22
pns-tmz%% X — 2. V =V, +at

{ 2
3. X=Vot +5alt

Distance x=|3 f1]

Tnitial velocity w0 =0 s
Final weloctty v = |4 113
Awerage velocity = |2 115

Acceleration a =| 2 EEERERRRE s ™
Timet= 15 g



Motion Example

Irutial welocity =2 s, Final welocity = 8 115
Y Equations of mation
0 vV — = Vo + V
1. x=vt v=212
pnsmr;j% X —— 2.V =Vy + at

{ .2
3. X=Vyt +at

Distance =110 11

Irutral weloctty wl = |2 115
Final welocity v =8 115
Average veloctty = |5 115
Acceleration a=|3 152

Time t =2 3



Motion Example

Trutial welocity =18 s, Final welocity =10 115
v Equations of motion
0 v — — Vy +V
1. x=vt v=2

X —» 2. V =V, +at

i/ it
3. X=Vyl +5at

Distance x =15 £1]

Ttitial welocity w0 = |8 113
Final welocity w =0 113
Average velocity = |4 113

Aeceleratton a = -2.13333333 mfa™2
Time t =13.75 g



Motion Example

[rutral velocity =8 s, Final velocity =2 ru's
Y Equations of motion
0 vV — — Vo +V
1. x=vt v=22

X —— 2.V =V, +at

=0/ p
3. X=V,t +5at

Distance x=|20 f]

Trutial welocity wi = |8 115
Final weloctty v =|2 115
Awerage velocity = |5 1
Acceleration a=|-15 1L

Time t =4 g



General Equations for
projectile motions

® A LAX- Trajectories can be described by the
crer e e 5 o general motion equations for constant

R acceleration. The key idea is that the

g i i " horizontal and vertical motions can be

‘ Vertical | Baranrd . B " ... EEDEIFEItE'd- The motion EE}UE[“-DI"IE

........ accelerationis || ___ : . |...... .. obtained constitute a complete description

g, regardiess | Successive | of the motion, given the initial conditions.

e . Df h-l:IIII'ClI"IEEJ :. H IHIEWEIJS- ci ] brroeoe : - : - -

. | moton | |lare equal, | ® :

2 = . |showing zero || . _

acceleration. : e 5 - a:

: § B : : ] ' - : : : V}E vﬂl

: T Vertical distance, as well i R e b e ven Vox t

ﬂ.}" as velocity and acceleration, ﬁy ST T R S

: is independent of x motion. : l : Vertical Motion l

S T T =0

_. Horizontal distance is X = Vg, 1 Yy = vﬂ"_i" t -%g‘[

Tt Horizontal Motion —»

0

<
Il

.........

direction, so the y wvalues

e L Upward chosen as positive
+
will be negative.



SOME EXAMPLES
FOR
ONE DIMENSIONAL PROJECTILE MOTIONS



Freefall (a =0, v =v, =0,x=0, Vo,=0, y=h,
hitting velocity v =20 m/s )

Images of an
object in
frecfall at
constant

time intervals.

Mote that
the distance
traveled in
each
successive
interval is
larger.

g=98 m/se
so that the

velocity
increases

9.8 m/s each

second.

Y

Vy

In the aksence of fictional drag, an object near the surface of
the earth will fall wath the constant acceleration of grawity g
Fosttion and speed at any titne can be calculated from the
motion equations.

Thuztrated here 12 the sitmation where an object iz released
trom rest. It's posibion and speed can be predicted for any
titme after that. Since all the quantities are directed downward
that direction 15 chosen as the positive direction i this case.

vy = gl Taking g = 9.8 m/s?
y ==2gt> = 32.15 ft/s?
At time t = |2 04081632E 2 after being dropped,
the speediz vy = 20 1115

The distance from the starting point wall be
w = 204087 b3k



Freefall (a,=0, v,=v,,=0,x=0, v, =0, y=100m)

Images of an
object in
freefall at
constant

time intervals.

MNote that
the distance
traveled in
each
successive
interval I1s
larger.

+Q
g=98 mise
s0 that the
velocity
increases

9.8 m/s each
second.

A

In the absence of frictional drag, an object near the surface of
the eatrth wrill fall with the constant acceleration of grawity o

Position and speed at any time can be calculated from the
motion equations.

Hhustrated here 15 the sination where an object 15 released
from rest. It's position and speed can be predicted for any
titne after that Since all the quantities are directed dewnward
that direction 1s chosen as the positive direction in this case.

vy = gt Taking g = 9.8 m/s?
y ==59t> = 32.15 ft/s?
At tine t = 451753951 ¢z after beimng dropped,
the speed 1z vy = 4427188722 mis

The distance from the starting ot waill be
w =100 1Ty



Freefall (a =0, v =v, =0,x=0, Vo,=0, y=h, t=10 s)

Images of an
object in
freefall at
constant

time intervals.

MNote that
the distance
traveled in
each
successive
interval is
larger.

4(9
g=98 mis<
so that the
velocity
increases

9.8 m/fs each
second.

In the absence of fictional drag, an object near the surface o
the earth wrll fall wath the constant acceleration of graswty o
Position and speed at any titme can be calculated from the
motion equations.

Tustrated here 15 the simation where an object 15 released
from rest. It's position and speed can be predicted for any
titne after that. Since all the quantities are directed downwats
that direction 15 chosen as the positive direction in this case.

vy, = gt Taking g = 9.8 m/s?
y =5gt? = 32.15 ft/s?
At time t= |10 s after being dropped,
the speed iz wy = 98 'S

The distance from the startines poimnt wiall be
w = 4900000000



Vertical Motion (a =0, v,=v, =0,x=0)

A

Vertical Trajectory

Vertical motion under the influence of gravity can be described by the basic
motion equations. Civen the constant acceleration of grawty g, the position
atid speed at any titne can be calculated from the motion equations:

V, = Voy - gt Taking g = 9.8 m/s?
1 42
y =Vo,t -39t

Tou may enter walues for launch welocity and titne 1 the boxes below and
cliclkt outside the box to perforim the calculation.

Peal at
For launch speed wps,, = |12 'S £ 34BH38 77 at
and time t = 2. 44 s, t=[1.22448979¢s



Vertical Motion (a =0, v,=v, =0,x=0)

M

Vertical Trajectory

Wertical motion under the influence of grawvity can be described by the basic
tnotion equations. (iwven the constant acceleration of grawity g, the position
and speed at any time can be calculated from the motion equations:

V, = Voy - gt Taking g = 9.8 m/s?
1
Y =Voyt - 39t°

Tou may enter values for lannch welocity and titne in the boxes below and
click cutside the box to perform the calculation.

FPeal: at
For launch speed woy = 100 1 s 127 BE1020<m at
and time t = 10.20 3, t=|5.10204081¢z



Vertical Motion (a,=0, v,=v,,=0,x=0)

. \

T 2 %
i 5
¥ . .

N

Vertical motion under the influence of grawity can be descrnibed by the basic
motion equations. Given the constant acceleration of grawty g, the position
and speed at any time can be calculated from the motion equations:

Vy = Voy - gt1 Taking g = 9.8 m/s?
VL vﬂyt -39 =

You may enter values for launch velocity and time in the boxes below and
click outside the box to perform the calculation.

_ | Peak at
For launch speed wpy = 200 m/fs 510.204081€m at
and time t=| 40.580 S . t=| 2040 s




Q2.1
¥ g This 1s the x—t

graph of the

Po motion of a
particle. Of the

\ R four points P, O, R,

and S, the velocity

v_1s greatest (most

positive) at

-
W )
)

A.point P. B.pointQ. C.pointR  D. pointS.

E. not enough information in the graph to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.1

This 1s the x—¢
graph of the
motion of a
particle. Of the
four points P, O, R,
and S, the velocity
v_1$ greatest (most

positive) at

J A.point P. B.pointQ. C.pointR  D. pointS.

E. not enough information in the graph to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.2
X g This 1s the x—t
7\ graph of the

/ \ i
Pof motion of a
/ particle. Of the

\ R four points P, O, R,
and S, the speed is
greatest at

A.point P. B.pointQ. C.pointR  D. pointS.

E. not enough information in the graph to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.2

This 1s the x—t
graph of the
motion of a
particle. Of the
four points P, O, R,
and S, the speed is
greatest at

A.point P.  B. point Q. J C.point R.  D. point S.

E. not enough information in the graph to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.3
¥ g This 1s the x—t

graph of the

Po motion of a
particle. Of the

\ R four points P, O, R,

and S, the

acceleration a_ 18

greatest (most
positive) at

-
W )
)

A.point P. B.pointQ. C.pointR  D. pointS.

E. not enough information in the graph to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.3

This 1s the x—¢
graph of the
motion of a
particle. Of the
four points P, O, R,
and S, the
acceleration a_ 18

greatest (most
positive) at

A.point P. B.pointQ. C. pointR. J D. point S.

E. not enough information in the graph to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.4

You toss a ball straight upward, in the positive direction.
The ball falls freely under the influence of gravity.

At the highest point in the ball’s motion,

A. its velocity 1s zero and its acceleration 1s zero.

B. its velocity 1s zero and its acceleration 1s positive (upward).
C. its velocity 1s zero and its acceleration 1s negative (downward).
D. its velocity 1s positive (upward) and its acceleration is zero.

E. its velocity 1s positive (upward) and its acceleration 1is zero.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.4

You toss a ball straight upward, in the positive direction.
The ball falls freely under the influence of gravity.

At the highest point in the ball’s motion,

A. its velocity 1s zero and its acceleration 1s zero.

B. its velocity 1s zero and its acceleration 1s positive (upward).
J C. 1ts velocity 1s zero and 1ts acceleration 1s negative (downward).

D. its velocity 1s positive (upward) and its acceleration is zero.

E. its velocity 1s positive (upward) and its acceleration 1is zero.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.5
This 1s a motion diagram of an object moving along the x—
direction with constant acceleration. The dots 1, 2, 3, ...
show the position of the object at equal time intervals Atz.

5 = 3 2 1
O O ® oo

x=0

At the time labeled 3, what are the signs of the
object’s velocity v_and acceleration a ?

A.v.<0,a =0 B.v. <0,a,>0
C.v.<0,a, <0 D.v.>0,a >0

E.v>0,a <0

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.5
This 1s a motion diagram of an object moving along the x—
direction with constant acceleration. The dots 1, 2, 3, ...
show the position of the object at equal time intervals Atz.

5 = 3 2 1
O O ® oo

x=0

At the time labeled 3, what are the signs of the
object’s velocity v_and acceleration a ?

A.v.<0,a =0 B.v. <0,a,>0
JC.vx<0,ax<O D.v.>0,a >0

E.v>0,a <0

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.6
This 1s a motion diagram of an object moving along the x—
direction with constant acceleration. The dots 1, 2, 3, ...
show the position of the object at equal time intervals Atz.
5 4 3 2 1

® ® ® o0
| > X

x=0
Which of the following v —t graphs best matches the motion

shown in the motion diagram?

1

v

t

0
B.

v

X

RN

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

t

0
D.




A2.6
This 1s a motion diagram of an object moving along the x—
direction with constant acceleration. The dots 1, 2, 3, ...
show the position of the object at equal time intervals Atz.
5 4 3 2 1

® ® ® o0
| > X

x=0
Which of the following v —t graphs best matches the motion

shown in the motion diagram?

vx vx v.x v.x vx

v .

0 t 0~ Eo t o\\f 0
A. B. C. D. JE\

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.7
This 1s a motion diagram of an object moving along the x—
direction with constant acceleration. The dots 1, 2, 3, ...
show the position of the object at equal time intervals Atz.
5 4 3 2 1

® ® ® o0
| > X

x=0
Which of the following a —t graphs best matches the motion

shown in the motion diagram?

(4] a a a a

: x x/ " "

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.7
This 1s a motion diagram of an object moving along the x—
direction with constant acceleration. The dots 1, 2, 3, ...
show the position of the object at equal time intervals Atz.
5 4 3 2 1

® ® ® o0
| > X

x=0
Which of the following a —t graphs best matches the motion

shown in the motion diagram?

: x x/ " "

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.8
An object moves along the x—axis with constant
acceleration. The initial position x, 1s positive, the initial

velocity 1s negative, and the acceleration 1s positive.

Which of the following v —t graphs best describes this
motion?

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley




A2.8

An object moves along the x—axis with constant
acceleration. The initial position x, 1s positive, the initial

velocity 1s negative, and the acceleration 1s positive.

Which of the following v —t graphs best describes this
motion?

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley




Q2.9
This is the v~ graph for

an object moving along
the x-axis.

Which of the following

descriptions of the O

motion 1S most accurate?
A. The object is slowing down at a decreasing rate.

B. The object 1s slowing down at an increasing rate.
C. The object 1s speeding up at a decreasing rate.
D. The object 1s speeding up at an increasing rate.

E. The object’s speed 1s changing at a steady rate.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.9
This is the v~ graph for

an object moving along
the x-axis.

Which of the following

descriptions of the O

motion 1S most accurate?
A. The object is slowing down at a decreasing rate.

B. The object 1s slowing down at an increasing rate.
J C. The object 1s speeding up at a decreasing rate.
D. The object 1s speeding up at an increasing rate.

E. The object’s speed 1s changing at a steady rate.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.10

You are given the v~ graph for an object moving along

the x-axis with constant acceleration. Which of the
following could you not determine from the information
given in this graph alone?

A. the object’s x—acceleration at any time ¢
B. the object’s x—velocity at any time ¢

C. the object’s position at any time ¢

D. more than one of the above

E. misleading question — you could determine

all of these from the v —# graph alone

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.10

You are given the v~ graph for an object moving along

the x-axis with constant acceleration. Which of the
following could you not determine from the information
given in this graph alone?

A. the object’s x—acceleration at any time ¢
B. the object’s x—velocity at any time ¢

J C. the object’s position at any time ¢
D. more than one of the above

E. misleading question — you could determine

all of these from the v —# graph alone

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.11
The position of an object moving along the x-axis 1s given by

x=5.0m- (4.0 m/s)t + (2.0 m/s*)r

Which statement about this object is correct?

A. For t > 0, the object 1s never at rest.
B. The object is at rest at # = 0.5 s.
C. The objectis atrestat = 1.0 s.
D. The object 1s at rest at # = 2.0 s.

E. More than one of B., C., and D. 1s correct.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.11
The position of an object moving along the x-axis 1s given by

x=35.0m- (4.0 m/s)t + (2.0 m/s*)r
Which statement about this object is correct?
A. For t > 0, the object 1s never at rest.
B. The object is at rest at = 0.5 s.
JC. The object1s atrest at # = 1.0 s.
D. The object 1s at rest at # = 2.0 s.

E. More than one of B., C., and D. 1s correct.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q2.12
The position of an object moving along the x-axis 1s given by

x=5.0m- (4.0 m/s)t + (2.0 m/s*)r

How many times does this object pass through the point x = 0?

A. twice, first moving in the positive x-direction,
then moving in the negative x-direction

B. twice, first moving in the negative x-direction,
then moving in the positive x-direction

C. only once, moving in the positive x-direction
D. only once, moving in the negative x-direction

E. never

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A2.12
The position of an object moving along the x-axis 1s given by

x=5.0m- (4.0 m/s)t + (2.0 m/s*)r

How many times does this object pass through the point x = 0?

A. twice, first moving in the positive x-direction,
then moving in the negative x-direction

B. twice, first moving in the negative x-direction,
then moving in the positive x-direction

C. only once, moving in the positive x-direction

D. only once, moving in the negative x-direction

J E. never

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



MOTION EQUATIONS

e L—;ﬂx_—l—ak%ﬂ?xf s

.................

acceleration is | a
- | g, regardless | |Successive
@2 of horizontal  ||x intervals
' moton |are equal, |
R — |showing zero |
-- ..... - T ﬂ{:{:ﬂ!ﬂ[a‘hﬂn_

e LAREH

B ... ...........

Vertical distance, as well
.ﬂ}" as velocity and acceleration,
- is independent of x motion.

| Horizontal distance is X = Vg, 1

....................................

Trajectories can be described by the
general motion equations for constant
acceleration. The key idea is that the
horizontal and vertical motions can be
separated. The motion equations
obtained constitute a complete description
of the motion, given the initial conditions.

.............. .

.......

...............

..........

........

Horizontal Motion —»

0
Vx \fg.x
X Vox 1

Vertical Motion lr
¥ g
& “"b';r i gt
y = Vol —J.:r_;,g'(2

)
>
I

< O
i

direction, so the y values
will be negative.

; Upward chosen as positive
+



Horizontal Motion (a,=0, vy=v,=v,,, v, =0)

A1l the parameters of a horizontal launch can be calculated with the motion equations, assurning a

downward acceleration of grawity of 9.8 m/s?.

_O—=—> /- iaunch velocity -

FY

' bg.' 0 9‘3'

i ®

& t=/22 e

. h=height i = —— ..

10 B ' VY o 2gh R B Downward chosen as

e a/g T Emss
@ h=3gt® i @il
T T R=vV }2_h i \9=impact velocity
. = SNAC ~ att=time of flight _
— ———— R =range —— — _l'.lvy




Example: Horizontal Motion (v =v =v, =12 m/s,
h=20 m)

Horizontal I .aunch

A1 the parameters of a hon=ontal launch can be calculated wath the mmohon equations, assutming a

doarmmwrard accelerabion of grawty of 9.8 rmfs®.

: = . :
T __ V= launch velocity o Tiroe of Hicht
data in boxes. t= -E.DEI-:ISDEDEEE = -
* g g + - Then click on “ertical unpact velocity
- . the relationship W = | 19.793958987 mfs
' ' : - for the quantity Launch welocity
t f2h you wish to v =12 s
: ' o g ' calculate. Height of launch
h = height : : - - =
: WV, = ,-'Egh _ : h -ED.DDDDDDD[ m
L Downward chosen as Honzontal range
: : positive direction, so —
— R .-"E'Qh _li O e e °° R.=24.2436610¢ m
positive.
1 2 ' ' ' : Calculation 15 muhated by
h = 2 gt : : g : cliclking on the fortmula i
R = VU / 2h 1,_,;,= impact velocity the i]lgstrati::-n fmr the
g at t = time of flight quantity you wish to
calculate.

R = range : T—— ‘lvh"



Example: Vertical distance for v=500
m/s, R=1000 m

It aur friction 15 neglected, then the drop of a bullet fired honzontally can be treated as

an ordinary honzontal trajectory. The anr fniction 15 sigmificant, so this 13 an
idealization.

It the rmuzzle welocity 15
w=h00 mis = |[1640.41994% &'z = 1120 mithr = | 17953.5671151 kmvhr

atid the distahce dewnrange 1s
E. =1000 = | 3280.83989% & = |1093.613259¢| wards,

Then the atnount of drop of the bullet below the honzontal would be
d=196 tn = |[1960.000000 ctn = | 771.653543% inches



Example: Horizontal range and time for
v= 500 m/s,d=20 m

It atr friction 13 neglected, then the drop of a bullet fired honzontally can be treated as

a1 ordinary honzontal trajectory, The air fiction 18 signficant, so this 13 an
ilealization.

It the gun 15 fired on level ground at a hewght of |20 tn = |BR.ETE7979CH, then
the bullet will but the ground i |2 02030608¢ seconds, having traveled a distance of
1010.15254¢| meters = | 3314.14876¢ teet.



General Trajectory: Projectile motion

The motion of an object under the mfluence of grawty 15 determmned completely by the acceleration
of graswty, itz launch speed, and launch angle provided aur friction 15 neghgible. The honzontal and
wvertical motions may be separated and described by the general motion equations for constant
acceleration. The initial wector components of the welocity are uszed in the equations. The diagram
shows trajectories with the same launch speed but different launch angles. Tote that the &0 and 20
degree trajectories have the same range, as do any patr of launches at complementary angles. The

launch at 45 degrees gives the masmum range.

. Horizontal Motion ——» . ;."5.,__ is ;... Vertical Motion

Ox = E R S s L e e e B
f :-:_.: coecetitlee,, % ¥V = W t-30t
:.' : : .--- . "‘-..- : i :
oiel Le%950 ) BT
GD-- -I. .;-.‘.i‘--.“-!?-‘.-'-'. , i I' -.-- |
- .L- -.'..-'. 3 e T A T
9 .._F- - : .'.-. L : L]
‘:,.! .. 30° _: "-.-l} .l
] . *e L]



Example: Particular horizontal velocity, horizontal distance,
vertical velocity and vertical position for v,=30 m/s and 8=60

at t=2
At time t = |2 S
: . Horizontal Motion -
______ The launch speed, angle, and the value a, = 0
- of g completely determine the position =R s Vx = Vpox
- and velocity at any tlr_ne. Ll i ntaelee
e B S e e . wy=15.00000000 ms.
| ___:.1* - E- u~* ; i b o — VEJK 1:
- PR ony s ikl ot Horizontal distatice
~ra - : 3 = |30.0000000Cx.
¢ EEI e S e Q'JV Vertical Motion '+
e =10 : The acceleration ..* : Upward chosen as positive
ol is g downward at = direction for y motion.
n: : : all points of the Rt P —r 2
LV S i S Tt wad y : . trajectory. : e ay o g = -9.8m/s
0 — =
¥ B F e ' i sV = Vo)
B i P : o Wertical velocity
f o Wi =|6.38076211 /s,
b - ' e e
_ = t -1 gt?
For launch welocity o = | 30 tr's, launch angle B = Y — 1III"'Ir{::|'3|.|' 2] g
6O degrees: Wertical posihion

¥ =|32.3615242:m.



Range

| | . . The basic motion equation

_______ : B X = Voxt

_______ ~ Range of Trajectory .. e usedto find the range.
By symmetry, the total

: o P P time of flight is equal to twice
e eemag T the time at the peak:

et v e e e da R 2
R i O RO O O trange.-:r‘-}tpeak:%

-' : '.. : - This gives:
....... _-"_ _ __ g _'- - Ft _ E\Ihx “F-D!,I'

....... : - ; e A L R g

....... frasseafosssanfgrirdomanionindussbumrnd s Théamele.ralinn '_ S - E\.ﬁEEHBEDSH
beslpinel Sty isgdownwardat : R

....... all FHJthE- of the : _- """ g
L trajectory. fo o v 2o
e o %1 Vg sin 20
2 s . | I g
VAsin 2 :
0S 6 .»_: using the trig identity:

g e sin26 = 2sind cos#.

=R =




Peak Helght

. The basic motion equation

- Henght of Trajectory y =W

S e L e L can be used to find the height.
.| Vertical mmpnn&nt The average vertical speed is:
- | of velocity is zero = Voy t+ 0 Voy
ie] at the peak. : V= =4 = ¥

IR :a ?; o e 4 2 2

: % : _-';"' 5 The time at the peak is

i AN N obtained by solving for the

e b time at zero vertical speed:
W .

2 T 0 = Voy = Gtpeak

This gives:
v

=y
E . m—
4 _ i tooax =
\fﬂ P o Average vertical velocity is | and substituting:
o i SR S half the vertical component | UE
: B Shrdaues prasinfans : ....p-] of the launch velocily. . h — y — _O':f
: H I Oy m T T . o 29

Vp, = Vp COS B



Time of Flight

L A -
' '-_‘ ......... _. -....-...: .....
i : g [ i

..-.. e R . EEE TS EEEEET DU '......E....
.
oM A
[

i
- o

~ The equation for t _‘.
- has two solutions |

since there are two
times when the i h
projectile passes @ |

through height h.

The basic motion equation

h =y, t-3gt°

can be used to find the time
of flight at height h, giving:*

e My /\/""’%y_i?h
g g g

MNote that there is no real

orh >

solution if
v%y,
2

h- V%y
g g2

since such values of h are
above the peak of the
trajectory. For the value h=0:

2V,
t=0and t=—2



Example: Peak Height, Range and Time
of Flight for v,=10 m/s and 6=30

Calculation of Peak Height,

Range and Time of Flight.

Peak height
2
H = L0y
=
Time of flight -
A t= =0
o e vésin 26
B ge = - g

'Y

For launch welocity

© oy =10 11us,
launch angle
B =30 degrees,

 The hornzontal range 13
- E = 8.83699391¢ m.
. The total time of flight 15

t=|(1.0Z2040G61k: 5.
The peak height is

- h= 127551020,



Example: Peak Height, Range and Time
of Flight for v,=10 m/s and 6=45

Calculation of Peak Height,
Range and Time of Flight.

. : For launch welocity
Feak height [— st g Brerert et et et ) = (N s,
VEJE'!I.-’ - Z i launch angle
h = E_g : ST S S B =45 degrees,
- The honzontal range 1s
- E=110.2040816% m.
e oo ~iiieed The total tme of thght 1s
Time of flight - | t=1.44307506%s.
‘o E""Dy - : The peak height is
: V AN ROV g e h=255102040¢ 1.




Example: Peak Height, Range and Time
of Flight for v,=10 m/s and 0=60

Fe ak hElght

h=

Calculatu}n of Peak Henght
Range and Time of Flight.

E
ﬂ‘f

2g

Time of flight -

Range =R =

Evﬂy

t=
g

vésin 26

g

For launch welocity

=10 1's,
launch angle
B =|k0 degrees,

- The honzontal range 13
- E.=8.83699391¢F m.
- The total titne of flight 15

t=|1.7b73498708%5.
The peal height 15

- h= 382653061 tmn.



Angle of Launch

.........................................................................................................................

e s B R N W we g N WS eELGR W N R Em Mg W mm R e W e me [ R AR N N NS RREE W N N NN N SN e M M mm e NN Em NN R N W NN R Gm e e R W N NS EM Em SRE R N NS N R N W m N W N N W e W R RE W W E e g W W W M omm m

R RECE N B R RN CEaET B R R R N CEE N R PR N B R PR MCE N R R RN CE N R RS RN MESRCE NN RN ORN CEaEe B BT ET PN CE RGN N RN W RN NN ECECE B R BTN OE R R SR OESE N R R RN Ea MR R MR BE R R CE R R ECECEE MEETE R R

o e 1k e o = e ZaLel s -_ Wihy two _-: ______ f
i i i - : : : : solutions? | : % 3

Lo rmmadinnnanshunaaridunasnnforead
q.ltﬁlﬁ#-p--i-.“- : : - -

h*,-!! -
v§sin 20

tiﬁi--.-ni




Example: Angle of Launch for R=20 m

=26

and v,=20 m/s

o e
1-.--',t;:| sin 20

g

ES BE1BE/97°49L0

= 5

and launch
wrelocity
g =

20

ER e L=

ES B1BEA979C
=
there are twro

soluticons for
the laanch

arngle.

Hy —
146702907
degrees,

B —
Fh . GIZ4704921
Adegrees.



Peak Height and Time of Flight for
v,=20 m/s x=25 m and 6=30

The basic motion equations can be solved stmiltaneously to express win terms of x

Calculate

[WAyandt

xandt s

X Vox 1

Y = Y, t-5gt°

. Substitute t =

v
to get ox
XVoy 1 X°

1
3’—— 592
Vox 2V

~ For launch velocity

v = |20 mis =
BR.E167979( ftfs, launch angle

_ B=|30 degrees,
. and horizontal range
- xZ=|zh =

82.020997 371,

: the calculated height 1z
P ¥ = 4 220423349 m =

13.86293705

 The time of flight is
_ t=1|1.443375k7:s.



More on Horizontal Distance
Where will 1t land?

The basic motion equations grve the position components ® and v in terms of the tine. Solnng for
the honzontal distance i tertns of the height v 15 usefil for calculating ranges i situations where the
launch pomt 13 not at the same level as the landing point.

. . : ] - i : x - Vﬂxt
Calculate R '.‘."."'- .......... . -t 1 12
[y and t i ize® it My - Yy = Voy!-39
W xandt ;.“.'. S ',- SRR S S Using the quadratic formula

: : : : : [T T S . to solve for t gives two values

of time for a given value of y:

t:vﬂyﬁ‘ U%F_EF
g - g? g

Substitution of the two time
values gives the two values of
X corresponding to a given
height v.




Example: Launch Velocity for R=40 m
and 6=30

Launch Velocity

The launch wvelocity of a projectile can be calculated from the range if the angle of launch 15 known.

[t can also be calculated if the masomum height and range are known, because the angle can be
detertmined.

- From the rance relattonship,

Given . the launch velocity can be
[ Rande i : : ot caleulated. For range
" Randh e - i Ro= 40 =
SR i S S o R B R S ot 1131.2335956¢ £,

gi ot and launch angle
B =30 degrees,
; h i L
: the launch wvelocity 1s
N = f\/ Rg vn = 212753991 tmis =
- 0 sin 26 - |69.80117847 fs.
. 5 .
V@ sin 26
@ . Range=R = 0 .




Example: Launch Velocity and Launch
Angle for R=40 m and h=20m

Given
[] R and 8:

[« R and h »

gl:’

UG Voy Vo ;
A h _ 29 Voy _ tan ©
/e R 2 Vo Voy AVg, 4
ol 9 R
For range
E = |40 tm — |131.2335958 &,
and pealk height
h= 20 trn — |BE.B1673700| &,

the launch welocity 15

v 22.1 359436 mu's = | F2. 62445869 Hi's.

The required launch angle is
0= |63.4349488; degrees.

From the range and peak

relatiﬂné.shipa: o

: W

R — Vg Sin 20 R Yoy
g 2g

the angle of launch can be
determined, leading to:

Ny L CY
o sin 260



Circular Motion

For circular motion at a constant speed v, the centripetal acceleration of the motion can be derrved.

simce i racian measure,

Lo, AV, 0 TS

r'y we can draw a similar triangle
‘ Vv *\9 with the velocities and conclude
V
e A\l
V
Setting the two expressions
for B equal and solving for
the acceleration gives:
We approximate the arc S by o AV ) UE
the chord here to derive the a-::enlripeta! i t T r
acceleration, but the chord A

approaches the arc for small angles
and in the limit, the result we get
5 exact.



Centripetal Acceleration

The centripetal acceleration expression 15 obtaned from analysis of constant speed circular motion by

the use of sumilar tnangles. From the ratio of the sides of the tnangles:

Approximating the
arc with the chord Substituting for s and

§ — @/ S =V At rearranging gives the

I V Centripetal

acceleratio
AV

By similar triangles




Centripetal Acceleration

AV_, _V°
At'a'r

For aveloctty of 5 s and rads |2 tn, the centripetal acceleration 5125
s
Note that f the veloctty 15 doubled to 10 s af the same rads, the acceleration is

quadipledto 5 m




Centripetal Acceleration

Av_,_V
Al 4z [

For avelocty of |1 s and rads |7 tn, the centripetal acceleraton s 05
11

Note that 1f the veloctty 15 doubled to 2 s at the same racms, the acceleration 1
quadrupled to ? st




Centripetal Force

Aty motion i a curved path represents accelerated motion, and requires a force directed toward
the center of curvature of the path. This force 15 called the centripetal force which means "center
seeking’ force. The force has the magniude

2
entripetal = M T

SWINZING & ass of a string recuires sting tenston, and the mass wil travel off n a tangential
stratght line if the string breaks.

The centripetal acceleration can be derved for the case of circular motion sice the curved path at
aty potit cat be extended to a circle




Note that the centripetal force 1
propotttonal to the square of the
velocity, taplymng that a doubling of
speed will require four tines the
centripetal force to keep the motion i 2
circle. I the centripetal force must be

¥
Fr:entripetal =M=

Ve i the cont
YV isthe centripeta

¢ acceleraton provided by fction dlone on & curve,

afl tcrease i speed could lead to an
unezpected skid of ficton 15 msuffictent




Centripetal Force Calculation

Centripetal force = mass x velocitv? / radius

+ Hequired string .
tension o

&,

E i
: mv '
— s I 1

INaote that the condifions here assume no
additional forces, lilke a horirontal circle
onl a frictionless surface. For a vertical
circle, the speed and tension must vary,

Any of the data walues may be changed. "When finished
with data entry, click on the quantity wou wish to
calculate in the formmula abowve, Tt conversions will be
carried out as vou enter data, but walues will not be
forced to be consistent until wou click on the desired
cuatitity,

Calculation for:

Fads r=|1 i = 3.28038393 &

Idass =m==2 kg = 01370503 5lugs
WWeight = W=19.64 I = 4. 40647 45 ks
Welocity = v=5 s = | 16.4041 99 =

ot i cotmmot highway speed units,

velocity = |18 lern'h = (11.184681 mm'h
Centripetal force= F=50 I =111.2410071ks



Centripetal Force Calculation

Centripetal force = mass x velocitv? / radius

Calculation for:
Eadmsr=/(10 m =32 8083951
Mags =m=" kg =|0.1370503 shags

*" Required strin
. Req g Weight=W=195 [N =440647451bs

"’ tension
: v Welocty =v=20 mfs = B5E16797 s
my 2 S . .
! T= e 1] o of th common highway speed utits,
L | veloctty = |72 kb =44 738720 mmu'h

Centripetal force= F=80 I =|17.985611 lbs



Relative Motion

The laws of physics which apply when you are at rest on the earth also apply
when you are i any reference frame which 15 moving af a constant velocty with
respect to the earth. For example, you can toss and catch a ball m a moving bus
the motton 15 0 a straight e at constant speed

The moton may have a diterent appearance as newed from a diferent reference
frame, but this can be explaned by mchiding the relatve velocty of the reference

frame i the description of the moton



Relative Velocity

e tnast talkee mte account relative welocities to describe the motion of an arplane in
the wind or a boat ih a current. Assessing welocities involves vector addition and a
nsehil approach to such relative welocity problems 15 to think of one reference frame
as an "mtermediate” reference frame i the form

— —

— -
Vac = Vag T Vi

Put mnto words, the welocity of & wath respect to O 18 equal to the welocity of A wath
respect to B plus the welocity of B weith respect to O, Eeference frame B 15 the
intertmediate reference frame. This approach can be used sath the boat examples




Boat in Current

& boat i current 18 a good example of relative velocity

Velocity of the boat
with respect to the water.

i ' velocity of = >»

V “*'*. Y WE| water with
BE *-.,
’ respect to the

Resultant "
velocity of boat “‘ Ez:::rfgle Direction

with respect to the .
of motion
Earth. Current

— @ == =

Ve = Vpw T Ve

The water is used here as an
intermediate reference frame.



Boat in Current: Resultant Speed and
Bearing

Boat in current as example of relative
velocity, Assummne the rower heads
stratght across the river and 15 carmed
downstreamn by the current.

— e e

Vee = Vew T Vwe

since the velocities fortm a right
triatigle, any velocity can be found
from the tnangle relationshups if the

other two are knowm,

2 2
VeE =\{"’Bw+"’w5

0 = tan ' —2E Vwe
Vow



Resultant velocity?

Velocty untt | m/s

—

—_

It the rowmg speed 13 vEW =12

—

aid the current speed 13 VWE =5

—
then the resultant speed 13 VBE

at an angle 8 =22 519864° downstream




Resultant velocity?

Welority unt | m/s

and the current speed 13 VWE =

—

It the rowing speed 18 VEW =h

s
=
m/s
.
VBE = 070678 mfs

then the resultant speed 13

at an angle B =45

® dowenstrearn




Boat velocity ?

Velocity urt | mys|

e

If the current speed is known to be vWE =3 s
—
atid the resultant boat speed 13 measured to be vBE =7 s
—
then the speed of the boat 12 vBW =h. 3245553 m/s

and it will be angled downstream at 8 = 25.376933°




Current velocity?

Veloctty untt | m/s

—
It the rowing speed 1z known to be vEW =110 ry's
=
anidd the resultant boat speed 15 measured to be ‘;HE =12 my's
=
Then the current speed 1s ?WE =h.6332495|m/s

and the boat will be angled downstream at 8 =|33.557308°




Centrifugal Force

Whereas the centripetal force 12 seen as a force which must be applied by an external agent to force
at object to mowe in a curved path, the centrifingal and coneolis forces are "effective forces” which
are invoked to explan the behawor of objects from a frame of reference which is rotating.

When you move along a curved
path, unattached objects tend
to move toward the outside of
the curve.

V =

The drver of a car on a curve 15
— i1 a rotating reference frame and
he could inwoke a "centrifiigal”
force to explain why his coffee

" ~/  cup and the carton of eggs he has
”centrifugar' force ofl the seat beside hum tend to

centripetal slide sideways. The friction of the
force seat or dashboard may not be

sufficient to accelerate these
ohiects i the curved path.



" 4 L person in a howverning helicopter
v ! abowe the car could describe the

¥ mowvernent of the cup and the egg
catton as just going straight while
the car travels i a curved path. It
12 sumilar to the "broleen string”
exatnple.

"centrifugal" force

The centnifugal force 15 a useful concept when the most conventent reference frame 15 one which 1s
mowving i a curved path, and therefore expenencing a centnpetal acceleration. Since the car abowe

will be experniencing a centripetal acceleration wiir, then an object of mass m on the seat will require

a force mwiir toward the center of the circle to stay at the same spot on the seat. From the

reference framme of a person in the car, there seems to be an outward centrifigal force it acting
to mowve the mass radially cutward. In practical descriptive terms, vou would say that vour carton of
egos 18 mote likely to slide outward if wou hawve a higher speed around the curve (the wvelocity

squared factor) and more lilkkely to shde coutward if vou go around a sharper curve ( the inverse
dependenice upon 1)




Motion in a Vertical Circle




Motion in a Vertical Circle

Consider a mass # performing circular motion under gravity,

the circle with radius 7 .
The centripetal force on the mass varies at different positions

on the circle,

d
Ry

top mg+Tl =—
r

middle e
r
2 mg
hottom T-mgs= —
r

string a an angle & to the vertica
n ng

mgoosf+ M =—
r



Example

Example

& 509 mass suspended at the end of a light inextensible
tring performs vertical motion of radius 2m.

if the mass has a speed of 5 ms™! when the string makes an
angle of 30° with the vertical, what is the tension?
(assume g =10ms2, answerto 1 dp.)

m=50g=005kg v=>5ms” =30 r=Im
g= 10ms™
the centripetal force 15 the sum ofthe tension in

the string and the component ofthe weight along
the string

=> a‘j'zglzns.§+f’=ﬁ

r
P

= T=—ﬁ|2 -mgcosé
r

(0.05)(5)°
2
=0.625-0433=0.192

= (0.05)(10) cos 30°

Ans. tension in string is 0.2N




Example

V= Jms? r=3m  g=10ms”

vy speed a bottom of circle

PE 12 measured relative to the bottom of the arcle

Example KE + PE string honzontal = KE + PE at bottom
: ; : 1 Ll

& 5kg mass performs circular motion at the end of a light §MVﬁ+mgﬁ"= Em""e.*'['

inextensible string of Iength am. o Viﬁ' Jgr= vg

If the speed of the mass is 2 ms™t when the string is

haorizontal, what is its speed at the bottom of the circle? Vy = 5E|+ dgr

(assume g =10 ms™2)

Ans, speed at bottom of circle 15 § ms™




As you can see from the given picture, ball is thrown harizontally with an initial
velocity. Find the time of maotion. (g=10m/s<)

1||.I"'|:|.= 3{]"1.{"5

=

I
m—————
o

3

% % % % % %N



Vo=30m/s

Ball does projectile motion in other words it does free

fall in wertical and linear motion in horizontal. Time of

rmation for horizontal and vertical is same. Thus in
Om vertical;

h=1/2q.t
80=1/2.10.¢¢
t=4s

m—————

AT



An object hits the ground as given in the picture below. Find the initial velocity of the
ohject.

Vo

% % % % N % % 530 %\
V=30m/s



..’l-———————————

Velocity of horizontal motion is
constant. So;

V=V.=Vcosh3d
V..=V=30m/s.0.6
V=V.=18m/s

530N\
V=30m/s



An object is thrown with an angle 37% with horizontal. If the initial velocity of the
object is 50m/s, find the time of motion, maximum height it can reach, and distance in
harizantal.

AN

—




—

V.=V c0s53%=50.0.8=40m/s
Vo, ~Vg,-sin33°=50.0,6=30m/s

a) V-Wp,~0-g.t at the maximum
height

t=30/10=3s
2.t=time of motion=2.3=bs

b} Vo, #=hp.o..2.9

Te=302/2.10=45m

¢} X=V...t 1o =40.6=240m



A balloon having 20 mfs constant velocity 1= rising from ground to up. YWhen the
balloon reaches 160 m height, an abject is thrown horizontally with a wvelocity of 40m/s
with respect to balloon. Find the harizontal distance travelled by the object.

160m




160m

x=7

(bject has velocity 40m/s in horizontal,
20m/s in vertical and its height is 160m.
We can find time of motion with
following formula;

h=Vg,.1-1/2.9.t°

160=20.1-1/2.10.t°

te=41-32

(t.8).(t+8)=0

t=8s
X=\p,..t=40.8=320m.



Objects A and B are thrown with velocities as shown in the figure below. Find the
ratio of horizontal distances taken by objects.

A

ground



Time of flight i5 directly proportional ta vertical compaonent of velacity. Yedical velacity

companent of A is three times bigger than vertical velocity component of B,

t;:,'."ltE= 3 tE;:t an

Harzontal distance traveled by the object is found by the follawing formula;

Xa=Vatys

Xe=Ve.tg

Harizontal component of %y is half of Vg, 0 we can write following equation;
V,=\g/2

Ve=2.Vy

ground X,V

Xp=2.Vpts3

Xa/Xg=3i2




welocity of the river with respect to ground is 2mis to the east. Width of the river is
olm. One boat starts its motion on this river at point A with a velocity shown in the
figure below Find the time of the mation and horzontal distance between the arrival
paint and point A,

80m




80m

Compaonents of boat velocity,
Vx=5.cos53"=3m/s to the west
Vy=5.5in53"=4m/s to the north

Time far passing the river is;
=XV=80m/dm/s=20s

Fesultant velocity in horizontal is;
V=V +Vriver
Ve=-3+2="1m/s to the west

Distance taken in honzantal 1s;
X=V1
X=1m/s.20s=20m



A river boat in a river having constant welocity travels 120m distance from point A to B
in 20 s and turns back fraom B to A in 12 =. If the velocity of the river is zero, find the
time of this trip.




=ince the time of trip from B to A is longer than the time of trip from A to B, direction of
river welocity is to the west.
“elocity of river with respect to ground is %, and velocity of boat with respect to river

15 %hoatriver-

Yelocity of boat with respect to ground when it travels from A to B becomes;
Ve=Vooatriver Vriver

and when it travels from B to A,

Ve=Vboztriver* Vriver

WWe can find welocities using following formula;

1. Mboatriver Vriver=120/20=6m/s

and

2V oatriver *Vrwer=120/12=10m/s

=olving equations 1. and 2. we find the velocities of river and boat.
Vhoatriver=8m/s and Vi o=2m/s

If the velocity of river is zero, boat travels 240m distance in;
240=8m/s.t

t=30s



Q3.1

A bicyclist starts at point P and travels around a
triangular path that takes her through points Q and R
before returning to point P. What is the magnitude
of her net displacement for the entire round trip?

P 'I>
\ A. 100 m
[
I \ 500 m B.200 m
400 m | \ C. 600 m
\ D. 1200 m
I
E. zero
.v— Y #\.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A3.1

A bicyclist starts at point P and travels around a
triangular path that takes her through points Q and R
before returning to point P. What is the magnitude
of her net displacement for the entire round trip?

P 'I>
\ A. 100 m
[
I \ 500 m B.200 m
400 m | \ C. 600 m
D. 1200 m
| \ V,
E. zero
.v— Y #\.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley
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This illustration shows the path
of a robotic vehicle, or rover.
What is the direction of the
rover’s average acceleration
vector for the time interval
from¢r=0.0stor=2.0s?

A. up and to the left

B. up and to the right

C. down and to the left
D. down and to the right

E. none of the above



Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

This illustration shows the path
of a robotic vehicle, or rover.
What is the direction of the
rover’s average acceleration
vector for the time interval
from¢r=0.0stor=2.0s?

J A. up and to the left
B. up and to the right
C. down and to the left
D. down and to the right

E. none of the above



Q3.3

The motion diagram shows an object moving along a
curved path at constant speed. At which of the points A, C,
and E does the object have zero acceleration?

A. point A only

B. point C only

C. point E only

D. points A and C only
E. points A, C, and E

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A3.3

The motion diagram shows an object moving along a
curved path at constant speed. At which of the points A, C,
and E does the object have zero acceleration?

—
v A. point A only

L J B. point C only
C. point E only

D. points A and C only
E. points A, C, and E

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q3.4
An object moves at a constant speed in a clockwise direction
around an oval track. The geometrical center of the track 1s at
point O. When the object is at point P, which arrow shows
the direction of the object’s acceleration vector?

H#) A. #1 (directly away from O)
#l #3 B. #2 (perpendicular to the track)
C. #3 (in the direction of motion)
D. #4 (directly toward O)

E. #5 (perpendicular to the track)

Oval track

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A3.4
An object moves at a constant speed in a clockwise direction

around an oval track. The geometrical center of the track 1s at
point O. When the object is at point P, which arrow shows
the direction of the object’s acceleration vector?

#) A. #1 (directly away from O)

#l P #3 B. #2 (perpendicular to the track)

C. #3 (in the direction of motion)

D. #4 (directly toward O)
J E. #5 (perpendicular to the track)

Oval track

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



Q3.5

A pendulum swings back and forth, reaching a maximum angle of
45° from the vertical. Which arrow shows the direction of the
pendulum bob’s acceleration as it moves from left to right through
point Q (the low point of the motion)?

A. #1 (to the left)

B #) . 45°| 45°

. #2 (straight up) p o
C. #3 (to the right) 49

D. #4 (straight down) | .

E. misleading question — the #1 Q #3

acceleration 1s zero at Q #4
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A pendulum swings back and forth, reaching a maximum angle of
45° from the vertical. Which arrow shows the direction of the
pendulum bob’s acceleration as it moves from left to right through
point Q (the low point of the motion)?

A. #1 (to the left)

J B (st 45°| 45°
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Q3.6

A pendulum swings back and forth, reaching a maximum angle of
45° from the vertical. Which arrow shows the direction of the
pendulum bob’s acceleration at P (the far left point of the

MOtign k) (up and to the left)
B. #2 (up and to the

right) 41
C. #3 (down and to the
right)

, #5
D. #4 (straight down)
E. #5 (down and to the

left )
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A3.6

A pendulum swings back and forth, reaching a maximum angle of
45° from the vertical. Which arrow shows the direction of the
pendulum bob’s acceleration at P (the far left point of the

MOtign k) (up and to the left)

B. #2 (up and to the
right) 41 y 45°]45°
C. #3 (down and to the P 4 R
right) ,

° #5 /| N3
D. #4 (straight down) S ‘ _____

E. #5 (down and to the #4 O
left )
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Q3.7
The velocity and acceleration of an object at a certain instant are

A
L]

y = (3.0 rn/s) J
d=(0.5m/s)i -(02m/s”)j
At this instant, the object 1s
A. speeding up and following a curved path.
B. speeding up and moving in a straight line.
C. slowing down and following a curved path.
D. slowing down and moving in a straight line.

E. none of these 1s correct
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A
L]

y = (3.0 m/s) J
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Q3.8

The velocity and acceleration of an object at a certain instant are
v =(2.0m/s’ )i +(3.0m/s) j
d=(0.5m/s)i -(02m/s”)j

At this instant, the object is

A. speeding up and following a curved path.
B. speeding up and moving in a straight line.
C. slowing down and following a curved path.
D. slowing down and moving in a straight line.

E. none of these 1s correct
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A3.8

The velocity and acceleration of an object at a certain instant are
v =(2.0m/s’ )i +(3.0m/s) j
d=(0.5m/s)i -(02m/s”)j

At this instant, the object is

J A. speeding up and following a curved path.
B. speeding up and moving in a straight line.
C. slowing down and following a curved path.
D. slowing down and moving in a straight line.

E. none of these 1s correct
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Q3.9

A z00 keeper fires a tranquilizer dart directly at a monkey. The
monkey lets go at the same instant that the dart leaves the gun
barrel. The dart reaches a maximum height P before striking
the monkey. Ignore air resistance.

When the dart 1s at P, the monkey

A.is at A (higher than P). A

B. 1s at B (at the same ///

height as P). *A

C. is at C (lower than P). A S .Ig
- =~ 0

D. not enough information %/

given to decide B
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A3.9
A z00 keeper fires a tranquilizer dart directly at a monkey. The

monkey lets go at the same instant that the dart leaves the gun
barrel. The dart reaches a maximum height P before striking
the monkey. Ignore air resistance.

When the dart 1s at P, the monkey

J A.is at A (higher than P). /Z%

B. 1s at B (at the same e
height as P). W A
C. is at C (lower than P). A S o
D. not enough information ﬂ/

given to decide &
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Q3.10
A projectile 1s launched at a 30° angle above the horizontal.
Ignore air resistance. The projectile’s acceleration 1s greatest

A. at a point between the launch point and the high point of
the trajectory.

B. at the high point of the trajectory.

C. at a point between the high point of the trajectory and
where 1t hits the ground.

D. misleading question — the acceleration 1s the same (but
nonzero) at all points along the trajectory

E. misleading question — the acceleration 1s zero at all points
along the trajectory
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A projectile 1s launched at a 30° angle above the horizontal.
Ignore air resistance. The projectile’s acceleration 1s greatest

A. at a point between the launch point and the high point of
the trajectory.

B. at the high point of the trajectory.

C. at a point between the high point of the trajectory and
where 1t hits the ground.

D. misleading question — the acceleration 1s the same (but
nonzero) at all points along the trajectory

E. misleading question — the acceleration 1s zero at all points
along the trajectory
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Q3.11

You drive a race car around a circular track of radius 100 m at a
constant speed of 100 km/h. If you then drive the same car
around a different circular track of radius 200 m at a constant
speed of 200 km/h, your acceleration will be

A. 8 times greater.
B. 4 times greater.
C. twice as great.
D. the same.

E. half as great.
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A3.11

You drive a race car around a circular track of radius 100 m at a
constant speed of 100 km/h. If you then drive the same car
around a different circular track of radius 200 m at a constant
speed of 200 km/h, your acceleration will be

A. 8 times greater.

B. 4 times greater.

J C. twice as great.

D. the same.

E. half as great.
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Newton’s Laws of Motion



Newton's First Law

WNewton's First Law states that an object will remam at rest or i untform motion in a straght ke
utless acted upon by an external force. It may be seen as a statement about mertia, that obects
will rematn in thetr state of motion unless aforce acts to change the motion. Any change m motion
trvolves an acceleration, and then Newton's Second Law apphes: i fact, the First Law 13 st 2
special case of the wecond Law for which the net external force 15 zero,

Newton's First Law contans imphcations about the fundatmental symmetry of the universe m that a
state of motton in & straght ke must be st as "natural’ as betng at rest. If an object 15 at restm
onie frame of reference, t will appear to be moving i a straight ine to an observer i a reference
frame which 15 tmowing by the object. There 15 no way to say which reference frame 15 "spectal’, so
all constant velocty reference frames must be eouvalent,



Newton's Second Law

Mewton's second Law as stated below applies to a wide range of physical phenomena, bt it 13
not a undatnental principle hke the Conservation Laws. It 15 applicable otly f the force 15 the net

external force. It does not apply directly to stuations where the tmass 15 changing, ether from
loss or gain of matertal, of because the object 15 traveling close to the speed of light where
relatrvistic effects must be mcluded. It does not apply directly on the very small scale of the atom
where quantumn mechanics must be used,

on object = of object x



Newton's Second Law Illustration

Newton's 2nd Law enables us to compare the results of the same force exerted on objects of

difterent mass.

o\

The same force exertad on a larger mass produces
a correspondingly smaller acceleration.




Newton's Third Law

Mewton's third law: All forces m the universe occur i equal but opposttely directed pairs. There
ate to 1solated forces; for every external torce that acts on an object there 12 a force of equal
magmtide but oppostte direction which acts back on the object which exerted that external force.
In the case of mternal torces, a force on one patt of a systemn will be countered by a reaction force
on another part of the system so that an 1solated system cannot by any means exert a net force on
the system as a whele. & system cannot "bootstrap” ttzelf ito motion with purely mternal forces -
to achieve a net force and an acceleration, it must mteract with an object external to itzelf

Without specifng the nature of origin of the forces on the two
F F ‘ I ~ masses, Newton's 3rd law states that of they anse from the two

L— -

m masses themselves, they rmust be equal i magmitide bt
|

M.  opposte in direction so that no net force anses from purely
mternal forces.

MNewton's third law 12 one of the fundamental symmetry principles of the umverse. Since we have
no examples of it being wolated in nature, 1t 15 a usefil tool for analyang simations which are
somewhat counter-intutive. For example, when a small truck colides head-on with a large truck:,
wour intution rught tell you that the force on the small truck 15 larger. Mot sol



Truck Collision

-_".

RN

In a head-on colhsion:

Which truc
Wlhich truc
Wlach truc]
Wlach truc]
Which truc

L will expenience t
L will expenence t
L will expenence t
L will expenence t]

he greatest mpulse?
he greatest change m momentum?
he greatest change m velocity?

L will expenience t

Which timgl

he createst acceleration?

2 would you rather be m dunng the collision?



Truck Collision

C'omparison of the collision variables for the two
trucks:

I a head-on collisiorn:

IMewton's third law dictates
that the ftorces on the traclks
atre =equal but oo site 1
directicr.

ILimpulse 15 force rmultplhied
b titmie, and tirme of contact
15 the saunie for bhoth, so the
itripulse 15 thhe sarne in

F magmitiade for the o
truaclks. CThatnige 1

Forrce F

[
R

F A mormentarn 15 eqgual to
ffﬁt;_?[f.f.j‘{? : itrpulse, so Eh;lgES it

. maotnenta are egual. WAWhaith
Cﬁ!ﬂf!g{? e m C— &v equal change in mormentuarn
FRECPFREEFLTLLFFT AV — rr and smaller mass. the

chatige i wvwelocits 1s larger
rralCA for the smaller traclke. Since
acceleraticon 1s chatnge in
welocity ower change 1
tirrie, thhe acceleration is
greater for the srmaller

Acocelerarior m::?

Rade m the bigger truck! There are good physical reasons! trucle.




Truck Collision

] 5

_ﬁ\ﬁiﬂfe in the bigger truck!

In a head-on ceollision the forces on the two wehicles are constrained to be the
satne by Mewton's third law. But from both Newton's second law and the
wotk-eneroy principle it becomes ewident that it 15 safer to be in the bigoer truck

m M.':.--:' S e Avr truch

The change m wvelocity of the drver wall be
"’-'J= truck — Llitdle truck the satne as the truck i which hefshe 15

mu hie trucl = ma it frel riding. & greater change i velocity implies
o -~ agreater change in kinetic eneroy and

therefore motre worke done on the drver,



Newton's Second Law

|
]
net external

Net force on abject = mass of object x acceleration



Limitations on Newton's 2nd Law

Cine of the best known relationships m physics 15 MNewton's 2nd Law

F =ma

bat, though extremely useful, it 15 not a fundamental principle ke the conservation laws. F must be
the net external force, and even then a more fundamental relationship 1

A(mv)

average netexternal — At

F

The net force should be defined as the rate of change of momentum; this becotmes

F — d(mv) dv dm
= ma e =m—+v—
net external net external df dt ds

otily 1f the mass 18 constant. smmce the tmass changes as the speed approaches the speed of light,
F=tna 15 seen to be strictly a non-relatimstic relationship which applies to the acceleration of
cotistant mass objects. Despite these lirmtations, it 15 extremely useful for the prediction of motion
under these constraints.




Some Cases for Newton’s Laws

Standard Newton's Laws Problems

Frictionless Case F Including Friction

| 1 g Iy TR B B

MM A xiﬁ
SR LN




Friction

Frictional resstance to the relative moton of two solid obyects 15 usually proportional to the force
wtich presses the surtaces together as well as the roughness of the surfaces. Since 15 the force

erpenicicular or 'normal’ to the surtaces which aftects the tctional resistance, this force 1
ypicaly called the "normal force” and destanated by N. The fctonal resistance force may then be
e

L = coefficsent of fchon Standard model
tfl‘iﬂﬁﬂll = “N 1y = coeftictent of kimetic fickon of friction

L. = coettictent of static fchon




Friction and Surface Roughness

At rest but at In motion at
: threshold of . constant
AFIF}“EEI motion. Applied "Ll"E'lﬂEit}".
force force
f=ugN 40N f=yuN
Ordinary 100N 50N | 100N | 40N
friction can be — = - — —
thought of as 2 ‘}’ Frictional Frictional
arising from . ¥ resistance resistance
f::;ﬁ:ess = .| Static friction will Once an object is in
/- ,' resist motion and motion, kinetic friction
4 R . counteract any will resist motion. In the
P A i applied force up to standard model, this

a certain maximum
where friction is

overcome and motion
begins.

resistance is taken to
be independent of
velocity.

[ general, the coefficients of fnction for static and kmetic friction are different




Coefficients of EFriction

Friction 15 typically charactenzed by a coefficient of friction which 15 the ratio of the frictional
resistanice force to the normnal force which presses the surfaces together In this casze the normal

force 12 the weight of the block. Typically there 13 a significant difference between the coefficients of
static friction and knetic friction

At rest but at In motion at
: threshold of : constant
Apphed motion. Apphed velocity.
force force :
SON f=ugN = f=u N
Ordinary » ,,1‘DD N SON ~ 100 N A0N
friction can be —— E O — : T
thought of as r,*" - _ rictiona — rictiona
ariair?g from I3 Wg=0.5 resistance B resistance
surface -
roughness. .-~ ; . .
.S Coefficient of Coefficient of
static friction kinetic friction
i Y et s TN
|IM’ Eﬂ N 40 N
" L !.L Q=T = D.E H k —_————ee =
', ; 100 N 100 N

IMote that the static friction coefficient does not characterize static friction i general, but represents
the conditions at the threshold of motion only



Normal Force

Frictional resistance forces are typically propottional to the force which presses the surfaces

together, This force which wll affect frictional resistance 15 the component of applied force which
acts perpendicular or "normal” to the surfaces which are in contact and 1z typically referred to as the
nottnal force. In many commeon sihuations, the normal force 18 qust the weight of the obyect whach 1z
sitting on sotne surface, but of an object 15 on an mchine or has components of apphed force
perpendicular to the surface, then it 15 not equal to the weight.

N=mg+Fsin N=mg-Fsino

F. N=mgcos®6

/0

§

For an object
sitting on a
flat surface,
the normal
force is just
its weight.

If a force acts
downward on
the object, the
normal force
is greater than
the weight.

If a force pulls For an object
upward on the sitting on an
object, the incline, the
normal force normal force
is less than is less than
the weight. the weight.



Mass and Weight

The tnass of an object 15 a fundamental propetty of the object; a numencal measure of its mettia; a
fundamental measure of the amount of matter i the object. Definttions of mass often seem circular
because it 18 such a fundamental quantity that it 15 hard to define in terms of something else. All
mechamical quantities can be defined i terms of mass, length, and time. The usual symbol for mass 15
tn atd its 51 vt 15 the kilogram. While the mass 15 normally considered to be an unchanging
propetty of an object, at speeds approaching the speed of light one must consider the increase i the
relativistic mass.

The weight of an object 1z the force of grawmty on the obiject and may be defined as the mass times
the acceleration of grawity, w = mg. Since the weight 15 a force, it 51 unit 15 the newton. Density 15
massivolume.

If an object has a mass
of 1 kg on the earth, it
would have a mass of
1 kg on the moon, even
though it would weigh
only one-sixth as much.

1 kilogram



Weight

The weight of an object 1z defined as the force of grawity on the object and maw be calculated as the
mass titmes the acceleration of graswmity, w — mg. Since the weight 15 a force, 1its ST vrit 15 the newwton.

For an object in Gee £all, so that grawvits 15 the only force acting on it, then the expression tor weight
Followars o I ewton's second laws

W=mg applies at all times, even
when the object is not accelerating.

— )

Weight Force Mass Acceleration
of gravity

W = F._ = m-g
M external

If the object is in free
fall with no other force
other than gravity
acting.

Weight of object = mass of ocbject x acceleration of grawvity

At the Earth's surface, where g—29. 8 mrs?



Centripetal Acceleration

The centnpetal acceleration expression 13 obtatned from analysis of constant speed circular motion by

the use of sirlar triangles. From the ratio of the sides of the thangles:

Approximating the
arc with the chord

Substituting f d
§ — AV S:V At reli':rrgalnugilr?gg g?w:seme
V

Centripetal
AV

By similar triangles

acceleratio

v

AV V?
— a g
VE At I




Centripetal Force

Any motion in a curved path represents accelerated motion, and requires a force directed toward
the center of curvature of the path. This force 15 called the centripretal force which means "center
seeling" force. The force has the magnitude

V2
Ifzentripetal = L=

SWINZING a tnass on a sthing requires string tension, and the mass will trawvel off 1n a tangential
straight e if the string breaks.

The centripetal acceleration can be denwved for the case of circular tmotion since the curved path at
any ot can be extended to a circle.

IMaote that the centnipetal force 15
proportional to the square of the
welocity, wnplnng that a doubling of
sppeed will require four times the
centripetal force to keep the motion in a
citcle. If the centripetal force must be
provided by fiiction alone on a curve,
ar imcrease i speed could lead to an
unexpected skid if friction 15 tnsufficient.

V2
F::Eﬂtripetal =m T

Ve -
is the centripetal
I acceleration




Centrifugal Force

Whereas the centnipetal force 12 seen az a force which must be apphed by an external agent to force
atl obiject to move ih a curved path, the centrifugal and corolis forces are "effective forces" which
are inwvoked to explain the behawor of objects from a frame of reference which 1s rotating.

When you move along a curved
path, unattached objects tend
to move toward the outside of
the curve.

V @u : —
The dnver of a car on a curve 18
— i a rotating reference frame and
he could wwoke a "centrifingal”

force to explan why his coffee
_/  cup and the carton of eggs he has

"centrifugal” force on the seat beside him tend to
centripetal shde sideways. The friction of the
force seat or dashboard may not be

sufficient to accelerate these
abiects 11 the curved path



L& person in a howverning helicopter
abowe the car could descrnibe the
movement of the cup and the egg
carton as just going straight while

N @:D - the car travels ih a curved path. It
15 sumilar to the "broleen stning®
] exatmple.
—
. v

"centrifugal” force -

The centrifiigal force 15 a uzefil concept when the most convenient reference fratne is one which is
mowing it a curved path, and therefore expenencing a centrnipetal acceleration. Smce the car abowe

will be expenencing a centripetal acceleration wir, then an object of mass m on the seat will require

a force mwdit toward the center of the circle to stay at the same spot on the seat. From the

reference frame of a person i the car, there seemns to be an outward centrifugal force e el acting
to mowe the mass radially oubtward. In practical descriptive terms, vou would say that vour carton of
eggs 18 tmore likely to shide outward if wou hawe a higher speed arcund the curve (the velocity

soquatred factor) and more likcely to shde cutward if vou go arcound a sharper curve ( the mverse
dependence upon ).




Coriolis Force

A golfer who is putting the ball from the

center of a rotating platform would tend

to miss to the right and overshoot the hole
if he were unaware

(1 g
i of the rotation.

The rightward
miss he could
blame on the
coriolis force
and the
overshoot
he could
blame on
centrifugal
force.

Gi‘ -

Centrifugal + Coriolis

force . force

0

Air which moves from the North Polar
region toward a low pressure area in
the northern hemsiphere

}ﬂ/____ will be deflected west

by the coriolis
il “i 4 .r'

force.
"I Coriolis
- force

Air approaching the low pressure area
from near the equator will be deflected
eastward by the coriolis force. This gives
the cyclonic counterclockwise rotation

of air around lows in the northern
hemisphere.



Conditions for Equilibrium

An obyect at ecuilibrium has no net miuences to cause it to move, etther i translation
(lineat motton) of rotation. The basic conditions tor equiibrium are;

1. Net =0 x and y components of force
may be separately set =0,

Forces left = forces right
Forces up = forces down,

2. Net =0 The axis may be chosen for advantage
to eliminate some unknown forces..

The sum of the clockwise torques is equal
to the sum of the counterclockwise torques.



Find the tensions
required to support
the massm

Find thetensions Y {5 | —
required to support & ET]CGSC!
the mass m ‘ '

) n |
}l—r

Eﬂ. =0:T sina +Tysinf = mg

Eﬂ.:U:Tlmsa =T, cosp

Force Equilibrium Example

..| The sum of the

- upward components
,/: of tension must

‘Tg sinﬁ support the weight.

The horizontal
\ components are
:| constrained o be
:| equal to each other.

mg

: Cosa
sine + ——sin fp
cosfp




Force Equilibrium Example

Force equilibrium problems ke this can be analyzed by drawing a free body diagram of the pont of
attachment of the mass tn, smce it must be at equilibrinm. The tensions should be resolved mto
hotizontal and vertical components to apply the force equilibrium condition

A | 6
2 F,=0:Tsinf=mg Tisin® T
—_0N - _ - .
E‘F:J._O TICG56_T2 TICDSH Tz Tz
mg o e
Tl ) ' Find the required

S11 H tensions if one

cable is horizontal.



Causes of Motion

The miluences which canse changes m the motion of objects are forces and torques. The effects of
forces on objects are described by Newton's Laws. A force may be defined as any miuence
which tends to change the motion of an object. The relationshup between force, mass, and
acceleration 15 gven by MNewton's becond Law

Fnet external =Ma

Newton's First Law states that an object will contime at rest of i tmotion i a straight bne at
constant veloctty unless acted upon by an external force. Newton's Third Law states that all forces
in nature ocour i pairs of forces which are equal i magnitude and oppostte n direction




Free-Body Diagram

A free-body diagram 13 a sketch of an object of mterest wath all the surrounding obiects stipped
rway and all of the forces acting on the body shown, The dravwang of a free-body diagram 15 an
tnp ottant step i the solving of mechamcs problems since it helps to wsualize all the forces acting
of a single object The net external torce acting on the object must be obtamed m order to apply
Mewton's becond Law to the motion of the obiject.

N = Normal force

supporting the
mass e-body diagram or 1zolated-body
weg At 18 sefil m problems wvolwng

F
. - equilibriuen of forces.
--ll—]C = HN

ah Free-body diagrams are useful for
WEIQ t=mg setting up standard mechanics

probletns.

Free Body Diagram



Free Body Diagrams

Normal

m—

Weight = mg




Free body Diagrams




Example: Free body diagrams

R \i /] T-"
‘.: N ]‘:; i
]
. fﬁ‘ {x ._
Mg mg



Free Body Diagrams




A b 15 pulled with 20N force. Mass of the bax 15 2k and surace 15 ictionless.
Find the acceleration of the box,

F=20N




Wi'e show the farces acting on the box with following free body diagram.

N 4 aFy

Umg

» component of force gives acceleration to the box.
Fy=F.cos37"=20.0,8=16N

F.=m.a

T6N=2kg.a

a=Bm's



Ficture given below shows the motion of two boxes under the eftect of applied force.
Friction constant between the surfaces 1 k=0 4. Find the acceleration of the boxes and

tensian on the rape. (g=10mfs?, sin37°=05, cos37°=03)

H.'I.z=l|<g

My

39

YA

\




Free baody diagram of these boxes given below.

T ™ T""I

Fsz Ffi |

\Ll oM ~L 30N

Components of farce,

F.=F.cos37"=30.0.8=24HN
F.=F.sin37°=30.0.6=18N
Mi=miq.9-Fy=30_-18=12HN

M_=10N

Ff1 and Fez are the friction forces acting on boxes.
Fio=kK. N =0.4_12=4 8N and F_.=k.NZ2=0_4_10=4N

We apply MNewton's second laww on two boxes.

E::-:

mq: Fret=m.a

20 T-FH,=3.a 20-T4.8=3.a
mz=: I-F==1.a T-d=a
a=2.8m/s<

T=6G.8N



Ag you can see In the picture guen below, twa boxes are placed on 4 fnctionless
surface. If the acceleration of the box X is Amis?. find the acceleration of the boy Y

Sl TSSO g3




Free body diagrams of boxes are given below,

30N
—

Fi=m.a
(30-T)=2.5
T=20N

Fret=m.a
T=5.a
20=5.a

a=dm/s<



In the system given belaw ignore the frction and masses of the pulleys. If masses of

%and ¥ are equal find the acceleration of the X2(g=10m/s?)
VA

)




Frae body diagrams of boxes are given below

T A S |
aince force acting on X1 double of force acting on ¥,
'ﬂ}{=2'¢w
10m 10m

For X: 2T-10m=m.a
For Y: T-10m=m.2a
a=2m/s?



YWYWhen systermn is in motion, find the tension on the rope.

F=20N




Free body diagrams of boxes are given below

T 20N
my: T+2g-20=2.a
mz: 3g-T=3.a
T l , 39-20=3.a
g a=g- putting it into m, equation;
1T T+2g-20=2(g-4)

T=12N




Fosition time graph of the box 1s given below. Find the fction constant between box
and suface? (g=10m/s4)

Aposition

m=3kg

F=12N
S

fime
\ W W W v e e W W WY )




Slnpelnf’[he gra-ph gi{fes 13 \."E|III-I3i’['_-,-' of the box. Since the slope of the position time
graph 1= constant, velocity of the box 15 also constant. As a result, acceleration of the

hox becomes zero.

—
F=12N
f=k'mg
l Foo=Ff=m.a=0
mg=3.10=30N F ot
f=12
k.mg=12
k.3.10=12

k=04



If the acceleration of the system given below 1s 3mfsZ, find the frction constant
hetween hax and surface. (sin370=05, cos370=0 8, sindb0=cosd50=+2/2)




Free body diagrams of the system are given below:.

‘M F1y=100.5in37°
F1y=100.0,6
Fiy=60N

FFIWN

60N
-40N\Z N2
::zx_ﬁr:l_\l_ Fix=100.cos37° T
> Fix=80N 40N 80N
A r H }
Fay=40.\[2\[2/2 4'3“], lmgﬂﬂ'DN

F=40N2 J, Fov=40N

Acceleration of the 10 kg box is 2mds<. Thus, net force acting aon this box is;
Fret=m.a

Fret=10.2=20N

Normal force of the box is;

N=100+40 60=80N

Friet=80-40-Friction

20=8040-k.80

k.680=20

k=1/4



fet force ws. time graph of object 15 qwen below. If displacement of this abject
between t-2t 15 75m, find the displacement of the object between 0-3t.

L Force
2F—,
|
|
i
I
i Time
12t 3t
o
I I
I I
I
-Fp------- —




WWe draw acceleration ws. time graph using force vs time graph of the object.

A‘Accelernﬁnn
Area under the graph gives velocity.
2a | If we say at=V then,
|
| V=2V
ar --_!_: V2t=3V
I I :
| | 1;:mg"."3t="."
t j2t 3t
I |
I I
I |
I I
I I
-2ap=======




YWi'e draw velocity vs. time graph now,

Velocity

3:}"_ e Area. under the velocity vs. time graph gives
| [ I us digplacement of the object.
| | | -

2V|-—— 4~ ——L -\ 0-t: AX =2Vt2=\t
' I I t-2t: AX-=5/2.\t
| | |

Vi-4-F-=-=-F-=-= 213t AX= 2.\t

| | |
| | | 1
| | | fL"-F;E
t 2t 3t

We know AX-=572\V1=75m, Vi=30m
Total displacement=AX, +AXo+AX - =Vt+52 Vi+2Vit
Total displacement=30+735+2.30=163m



aystem in the given picture belaw, bax moves under the eftect of applied force and
gravity with 1m/s2 acceleration. Find the friction constant between the box and surface,




Free body diagram of the system is given below;

Farces acting an the box perpendicularly;
30+80=110N

Box moves downward with 1m/s< acceleration.
Fozt=m.a

o0 40-F ;. =10.1

20-k.110=10

10=110k

k=111



WORK, ENERGY AND POWER



WWorlk

nefens o ann
AMCTEiVACY izavolvine o=
z=a For«Cce annqadl
ANROVERTrneTnt Eun tine
«dam-ectomimn of tIne
fonrce. A Forrce ofF
20O anewtoins
Prraasihwvane cagn olr» je ot
= Eametenrns inn tine
«dam-ectiozn of tine
fornrrce does 100
Joumles of wworklc.




Is done on an w for constant force
object when in the direction
of motion
Is NOT done @
f

acts on it in when there or constant force
the direction IS N0 motion with a component in

of motion @ direction of motion

------

or when the force for a variable force
is perpendicular  in the direction

to the motion. of motion w

for a variable force
in a variable direction

or has a
component

in the direction
of motion




Newton's Second Law

I
[ ]
net external

Met force on object = mass of object x acceleration




Work Example

In order to accomplish work on an object there must be a torce exerted on the
obiect and it must mowe i the direction of the force.

Force F

Distance d

i

Work = Force x distance moved in direction of force

Work Example

order for a force to do work on an object there must be motion which has a

component i the direction of the force,

Force F

Angle 6 » Work=Fcosfd
Distance d




Work done by a variable force

The basic worls relatnconshiap W —F =z 15 a spoecial case
which applies conlds bt constant force alorne a straitoht
lLhirai=e., That relanonshes sives thhe area o thhe rectarngls
showwrn, wrhere thhe force B oi1s ploted as a HGancticon b

?:gz*;racﬁgﬂc‘jz_;lﬁﬂgr Adistance. I thhe rmiore ceneral case of a force wwrwhach

= | 3 chanoes wwmith distance, thhe wrorls oy sl e calculated
% E"-"'-"=F:"‘:m as thhe area uander 1:11&_ curwre. For ezmarnpgele, for thhe smraorlc
ol : Aone b stretch a sernnes,. thhe area under thhe clur— e cann
= DHstarscs > m e readilys deterrmmned as thhe area of thhe triangle. The

e oo o owrer o calcuhias can _EJ_SC:- e app]ie_-::i simce thhe mmtezoral
g _-. e a2 =P thhe force owrer thhe distance ranzogs 1s ecpuaal t—= thhe area
— f =2 el under thhe fimrce cur=re:
o I s ey > > L S
(= o= WOk — fI:{:a-.'} iz — Jrl-::-: dx = Ik xi3,
= t [Fax O o
..1.:_] E For ans Danctiacon o =z, thhe wrorle rmasw be calculated as

(= S ET om thhe area vnnder thhe crorre by pperforrmingeg thhe inteoral

> =
WO ke =J( [ B = b

=

WYWork:{<Gemnenral beﬁnitiﬂn

The cenneral definntion of wrorle done bar a force muast talce inte acocount the fact that
thhe force may vanrw 1 both magmtuade and directicn, and that the path followe d rmawy

also change 1 duoecticon. &A1 these thaingss can be talen into acocount by defimang weorlc
as an imtegral.

Thi= defimitihsry b b; -
arm-cHanis b oan [ -
indinite sum of = %b - I: dS
the products of — o
the oompeonen il ol I: H e =
Fores alorg the o= This is taken o repraesaent the work doneae by the Forcss
::l'_l‘E"Eth ;:EE'E e — on the specified path bethween points a and . This thype of
IEnE:Th e ds imntegral is called a line iNmntaegral because it evaluates thes integral
Elarmeared _,_~" The genaral of the compomneaent of F along & lime. The ntegrand is =
A idea of wwork is scalar product Of the vwaector eslemeaents and it can also bhe
e Tornoe tmes werithen as [
- distarecs mmonec
— - This integral evalbuatss that
- product i this continucusiy W = Fcosb ds
warying e i norereeet ab
=



When a force does no work

& torce with no motion of a torce perpendicular to the motion does no work

Force without

— .
maotion

When a force is exerted on an
object which does not move,
no work is done on the object.

Force perpendicular

to the motion
-

constant
velocity

When an object is carned at
constant velocity by a force
which acts at right angles

to the motion, no work is
done on the object.



FEnerrswy

is thve capacity for-
doimg Wworli. Youn
AmuEst Inave €1nen oW
to aaccomplisis
wWworls - it is ke
thve ""Cculanencwv""
for perforamine g
worlt. To do 100
Jowumles of worlo,
NOTL IMIESt e Xprenndadl
100 joumles ofF
eaInen V.



Energy Forms

Eneray can be defined as the capacity for dotng work, but that capactty can reside i many
dferent fortms. Broad fortms such as mechatucal electrical chemical nuclear, solar can be
enstoned

Large amounts of energy exist m the foren of mternal eneroy within objects at normal temperatures.
Az several of the eneray examples pont out, the processes of heating and cooling are much more
enieray intensive than purely mechamcal processes.

Almost any process i nature can be viewed as some kind of eneray transter process. While 13
not praciical to try to categorze all the kinds of eneray transter processes, we cat state that none
of thetn mvolve any net gain of loss of energy. The principal of conservation of eneray constratns
the kind of processes which can occur th nature,




Energy Unit Comparison

Cne of the dificulties of reading articles about energy resources 13 the plethora of uts used. This 13
an attetnpt to give a cotnparison of some commeonly quoted energy units. You may enter a munber

i atry of the boxes to caloulate the compansons m other units
Joules |10 x 1071

ft-Ib(0.7374631 28 = 107 2

calorie 2. 388915438 = 107 |1

ETTI0.94781698% = 1071

kWh 2 77777777 = 107 -5

gallons of gasolne 0.7692 30765 = 10 |-6

1000 cu & of natural gas 0.90909090¢ =z 104 |-7
barrel of od 1.69491525¢ = 10 -3

ton of coal 0.38461538¢ = 10" |-8

The energy values for the common fuels are notninal values snce the energy content of these fuels

varies with the source.



Kinetic Energy

Kinetic energy 15 energy of motion. The kinetic energy of an object 15 the energy it possesses
because of tts motion. The kinetic energy™® of a pomt mass m1s given by

Kinetic energy = 1 mv?

Einetic energy 13 an expression of the fact that a mowing object can do work on atrything it buts; i
quantfies the amount of work the object could do as a result of its motion. The total mechanical
etieray of at object 15 the sum of tts kinetic energy and potential energy The total energy of an
isolated systen 15 subject to the conservation of energy principle.

For an obiect of finte size, this kanetic energy 1s called the translational kinetic energy of the mass to
distinagmsh it fromm any rotational kinetic energy 1 might possess - the total kinetic energy of a mass
can be expressed as the sumn of the translational kinetic energy of tts center of mass plus the lanetic
eneray of rotation about its center of mass.




Einetic energy 15 energy of motion. The kinetic energy of an object 1s the energy it possesses
because of its motion. The kinetic energy of a point mass m 15 given by

Kinetic Energy = - mv?

-

m [ e A=

=Gy Ok

You know it's not a good idea to step out into the road right
now because of the truck's kinetic energy. It can do work

on you as a result of this "motion energy”.

You know intuitively that the The KE depends upon the
KE depends upon the speed square of the velocity! So
of the truck. A faster truck at twice the speed, the
can do more work on you. truck has 4 x the energy!
‘A Why does it increase by
K i 1 m v > the square?
2

A\

You know intuitively that
the KE depends upon the
mass of the truck. A more
massive truck could do
more work on you.




Potential Energy

Potential energy 13 energy which results from postiion of configuration. An object may have the
capacity tor dotng work as a result of tts posttion i a grawtational field (grasmtational potential

eneray), at electnic field (electrc potential enerey), of a magnetic field (magnetic potential eneray). It

tnay have elastic potential eneroy as a result of a stretched spring or other elastic defortnation,

unstretched

[ sping  PE=0 Elastic
A PE=mgh Potential
Energy
. Gravitational PE = Ly 2
Potential =2
Energy
PE=0 Y —




Gravitational Potential Energy

Uravitational potential enerey 15 enerey an object possesses because of s postiion i a gravitational
field. The most common use of gravitational potential eneray 15 for an object near the surface of the

Earth where the gravitational acceleration can be assumed to be constant at about 9.8 mfs?. Since
the zero of gravtational potential enerey can be chosen at any potnt (ke the chotce of the zero of a
coordmate system), the potential energy at a et b above that poit 15 equal to the work which
would be required to bt the object to that heseht with no net change m kinetic eneroy Stnce the
torce required to b ot 15 equal to s weight, o follows that the gravtational potential eneray 15 equal
to 15 weqht tnes the hegght to which o 15 ted

PE = weight x height = mgh

gravitational



Elastic Potential Energy

Elastic potential energy 15 Potential eneroy stored as a result of deformation of an

elastic obqect, such as the stretclung of a spring. It 12 equal to the work done to
stretch the spring, which depends upon the spring constant k. as well as the distance

stretched. According to Hooke's law, the force required to stretch the spring wall be
directly propotiional to the amount of stretch.

—iice the force has the form

F =-kx

then the worl: done to stretch the unstratehed

spring a distance 3 1s el PE =0 Elastic
Pl Fotential

Energy

_ S T
WDrH_FE_Ekx i o
PE:EHI




Conservation Laws

It a system does not mteract with 3 environmert in aty way, then cerfan mechanical properties of
the system cannot change. They are sometines called "constants of the motion”. These quantities are
satd to be "conserved and the conservation laws which result can be considered to be the most
fundamental principles of mechatucs. In mecharcs, examples of conserved quattiies are energy,
motnentuin, and angular momentum. The conservation laws are exact for an olated system

Fundamental Principle Fundamental Principle Fundamental Principle
Conservation | [ Conservation | [  Conservation
of Momentum of Energy of Angular Momentum

tated here as principles of mechancs, these conservation laws have far-reaching mmphcations as
sytnmmetries of nature which we do not see wolated. They serve as a strong constramt on ary theory
i any branch of science.



Conservation of Energy

Energy can be defined as the capactty for doing work. It may exst m a varety of forms and may be
transtortned from one type of energy to another. However, these energy transformations are
constramed by a fundamerntal principle, the Conservation of Eneray pnnciple. One way to state this

principle 15 "Energy can netther be created nor destroyed”. Another approach 15 to say that the total
energy of an 1solated system remains constant.

Fundamental Principle Fundamental Principle Fundamental Principle
Conservation Conservation | | Conservation
of Momentum of Energy of Angular Momentum

shows up in many
forms in its

a powerful
tool for with external
forces

Mechanics Problem
Solving

Role as a
Fundamental
Principle

Work-Energy
Principle




Energy as a tool for mechanics problem
solving

The application of the conservation of eneroy principle prowides a powetful tool for problem

solving, Newton s laws are used for the solution of many standard problems, but often there are

methods wsing energy which are more straighttorward. For example, the solution for the mmpact
velocty of a falling obiect 5 ruch easter by energy methods. The bastc reason tor the advantage of

the energy approach 15 that st the beamning and ending enermes need be constdered, interme chate
processes do not need to be examned m detal since conservation of energy gaurantees that the
final eneray of the systetm 15 the same as the mital energy

The wotk-eneray princple 5 also a useful approach to the use of conservation of energy

mechanics problem solving, It s particularly usefil in cases where an object 15 brought to rest as i
a car crash of the normal stoppme of an automobile.




Object Falling from Rest

Az oan object falls fromm rest, its gravitational potential energy 15 converted to knetic eneroy
Consetwvation of eneroy as a tool permits the calculation of the welocity qust before it hits the surface.

By conservation of energy:

PE = m g h Energy before = Energy after
®k:z=0 _ 1 2
— mgh = —my
2R 2/| T
The beginning The final
energy is all The F11 on both sides | | eneray is all
potential energy. tells you that the final kinetic energy.
h velocity doesn't depend
upon the mass.
The velocity just before impactis V' = 2 g h
i'*--'-"i ] 2
1. KE = Emv




Evwen though the applcation of conservation of energy to a falling obiect allows us to predict its

impact velocity and kinetic energy, we cannot predict its impact force without knowing how far if
travels after tnpact.

h velocity




Work-Energy Principle

1 2 _ 1 2
Whet = 3 MVga ~ 5 MVifiial

The change in the Kkinetic energy of
an object is equal to the net work
done on the object.

15 fact 1s referred to as the “Worlc-Energy Principle and 15 often a very useful tool 1in
echamics problem solving. It 15 denwable from conservation of eneroy and the
applcation of the relationships for worle and eneroy, so it 13 not independent of the
conservation laws. It 15 1 fact a specific application of conservation of energy
owever, there are so many mechanical problems which are solved efficiently by
applring this principle that it merits separate attention as a worlung principle.

ot a strajght-line collisicon, the net worlke done 15 equal to the average force of tnpact
imes the distance traveled during the impact.

Average iInpact force x distance traveled = change in Kinetic
eNnersy




Conservation of Energy as a Fundamental
Principle

The conservation of energy principle 18 one of the foundation prnciples of all science disciphnes. In

ratied areas of science there will be pritary equations which can be seen to be ust an appropriate
etortulation of the principle of conservation of energy

Fluids Bernoulli equation
Electric circuits Voltage law
Heat and + :

+ First law of thermodvamics
thermodynamics




Power

is thve n"ate of
doimz worls on thve
1ate of nnsSiang
enerov., whicly an-e
IEEmenricallv tlve
saine. If vour do
100 joules of
worll inhn oxne
secCcoinud (nusimg 100
Joules of enmersv).,
thve powenr is 100
WWatts.



4

Power Calculation

Force F

Distance d

-

Work = Force x distance moved in direction of force

Work  Force x distance  Special case for constant
- time - time force acting in the direction

of motion,

avg



Power

Poswwrer mav be defined as the rate of doing worle or the rate of using energy. These
twro defimtions are equivalent since one unit of eneroy must be used to do one urt of
wrorle, Often it 15 conwenient to calculate the average power

P ZWDrl-::F-:-u::-sB:-:
avd time t

This can be rearranged in the form:

Fvg = Foos v, g

It turns oult that this is a genaral form and that instantansous power can be
calculated from the exprassion:

F?I‘lEl‘Elr'ItE.I'IEDIJE. = F cos v

which In vactor notation is the scalar product: P =F«w

In the straightforward cases where a constant force mowes an object at constant
welocity, the power 15 qust P = Fw In a more general case where the welocity 18 not in
the same direction as the force, then the scalar product of force and welocity must be
used.

The standard vt for power 15 the watt (abbrewated W which 15 a joule per
second.



F=20N F=20N
m=4kg | — > medkg — >

A &——%=5m — B

In the picture given above F pulls a box having 4kg mass from point A to B. If the friction
constant between surface and box is 0,3; find the work done by F, wark done by friction
force and woark done by resultant force.



Work done by F;
We=F.X=20.5=100 joule

Wark done by friction farce;
W io=-F. X=k.mg.X=10.3.4.10.5=560 joule

Worl done by resultant force;

W__i=F - X=(F-F).X={2010,3.4.10)5
Wrot=40 joule



Applied force vs. position graph of an object is given below. Find the work done by
the forces an the object.




15 Area under the graph gives us work done
> by the force.

X(m)

-5

Wark done between O-5rm:
W,=4.5=20 joule

Wark done between 5-8rm:
Wo=(6+4)'2.3=15 joule

Wark done between 3-11m:
W-=6.3/2=% joule

Wark done between 11-15m:
W,=5.4/2=-10 joule

Wrat=Wy +Wo+ W2+ W, =20+15+9+({-10)
W_ =31 joule



In the picture given below, forces act on objects. Works done on objects during time
t are Wy, Wi and WY, Find the relation of the works.

. F2 .

F3
HR A




. F; .

F3
HR A

m m m

Horizontal components of the applied forces are equal to each other. hasses of the
objects are also equal. Thus, acceleration of the objects and distances taken are also

equal.
Wiork done:
W=F;.X

W,=W-=W,



Applied force ve. position graph of an object 1z given below. Find the kinetic energy
gained by the object at distance 1.2m.

A F(N)
8

>
4 8 12 X(m)




By using woark and energy thearem we say that; area under the graph gives us work
done by the force.

AEK=W=area under the graph={G+4)/2.8 8{12 8)

AEK=12.48.4=16 joule



Box having mass 3kg thrown with an imtial velocity 10 mfs on an inclined plane. If
the box passes from the paint B with 4m/s velocity, find the work done by friction farce.

B

|

10
s h=2m

m=3kg

30° -




10
m/s heor

m=3kg

30°

We use conservation of energy thearem.
Ea=Eg+Whiction

Eﬁm EE
Whriction=1/2.m.V*-(mgh+12mV %)

Wiriction=1/2.3.10-(3.10.2 +1/2.3.4%)

Weiction =06 joule



Three different farces are applied to a box in different intervals. Graph, given below,
shows kinetic energy gained by the bax in three intervals. Find the relation between
applied forces.




olope of the B ws. position graph gives applied force

l. interval: F4={200)/{30)=4N
Il. interval: Fo=(30-20)/(10-5)=2N
ll. interval: Fz= (0-30)/{15-10)=6N

|F|||| Z*I F|| :-'rl Flll



A stationary object at t=0, has an acceleration vs. time graph given below. If object
has kinetic energy E at t=t, find the kinetic energy of the object at t=2t in terms of E.

acceleration
Am/s®

2af-=-=—=—=—=————-




acceleration
Am/s?

2af--=—=—=====-

time(s)
>

et

- ===

Area underthe acceleration-time graph gives velocity

Object has velocity at  g<ztime<t Object has velocity at <time<2t
Vy=at Vzo=at+((2a+a)/2).t=at+3/2.at=5/2.at
U2=5.":'_' .1||.||r-1

E,/E=(1/2.m.Vo2)/(112.m.\,2)=(5/2.V,)2/V,2
E,/E=25/4
E.=25E/4



An object does free fall. FPicture given below shows this motion. Find the ratio of
kinetic energy at point C to total mechanical energy of the object.

h

Ammm——— B
h

-—-—-—-— c
h




h
A ———— B
h
x ——————— c
h

T T T

CObject lost Zmgh potential energy fram paint A to C. According to conservation of
energy theorem, this lost potential energy conwverted to the kinetic energy. Thus; we can
say that kinetic energy of the object at point C is;

Ex=2mqh
Total mechanical energy;

Ei-tz=3mqgh
Ey/Etctz=2mgh3mgh



A box 1z released from point A and it passes from point D with a velocity % WWorks
done by the grawity are VW, between AB, W. between BC and Wy between CD. Find

the relation between therm.




Wark done by gravity is equal to change in potential energy of the object.
Interval AB: W =AEp=-mqgh
Interval BC: Wo=AEp=-mqgh

Interval CD: W-=AEp=0

W1 =Wg :‘-'Wg



An object thrown with an initial velocity ' from point A It reaches point B and turns
back to point A and stops. Find the relation between the kinetic energy object has at
point A and energy lost on friction.




A
(bject has kinetic energy at point A;
Ei=12.mV-
Object stops at point A, which means that all enerqy is lost on friction.
Ex=Eriction




YW throw object from point A with an initial kinetic energy E, and it reaches point C.
How much energy must be given to make object reach point O,

E




llsing conservation of energy thearem;

E=2mgh+Fiztion.2X

E=2{mgh+F; 400 X)

mgh+F; i o,-X=E/2

E=3mgh+Hriction.3X

E=3{mgh+Friction.X)

E=3.E/2=1,5E

we must give 1.5 E energy to make object reach paint 0,



Consider the falling and rolling motion of the ball in the following two resistance-free
situations. In one situation, the ball falls off the top of the platform to the floor. In the
other situation, the ball rolls from the top of the platform along the staircase-like
pathway to the floor. For each situation, indicate what types of forces are doing work
upon the ball. Indicate whether the energy of the ball is conserved and explain why.
Finally, fill in the blanks for the 2-kg ball.

FE=100]
KE-0]

B
[
al

o
I
=
g




=_T ]
-_G

"B A

H mfs I||||

The answers given here for the speed values are presuming that all the kinetic energy of the ball is in the form of translational kinetic
energy.

The only force doing work is gravity. Since it is an internal or conservative force, the total mechanical energy is conserved. Thus, the
100 J of original mechanical energy is present at each position. So the KE for A is 50 J.

The PE at the same stairstep is 50 J (C) and thus the KE is also 50 J (D).
The PE at zero height is 0 J (F and 1). And 50 the kinetic energy at the bottom of the hill is 100 J (G and J).
Using the equation KE = 0.5*m*vZ the velocity can be determined to be 7.07 m/s for B and E and 10 m/s for H and K.



Determine Li Ping Phar's (a mass of approximately 50 kg) speed at locations B, C, D
and E.

F.
KE=0 .
PE=50 000 J
B D
KE=20 000 J KE=20 000 J
PE=30 000 J %PE=ED 000 J
100 m = ‘ '
C
60 m
KE=35 000 J ] E
PE=15 000 J 30 m KE=50 000 J
3 PE=0J




A

KE=0 J

100 m

B: KE =
20000
v =28.

[): same

PE=50 000 J

B
KE=20 000 J
PE=30 000 J

KE=35 000 J
PE=15 000 J

0.5 em  v2
J=0.5e(50kg) » v2
3 m/fs

as postition B

v =283 m/s

D
KE=20 000 J
PE=30 000 J

60 m
E
KE=50 000 J

i PE=0J

C:KE=(0.5em e v?
35000 =05 (50Kkg) » v?
v=237.4m/s

E:KE=0.5em » 2
50000J)=0.5 e (50 kg) » v2
v =447 m/s



IUse the following diagram to answer question Meglect the effect of resistance

forces.

A

As the object moves from point A to point D across the surface, the sum of its
gravitational potential and kineticenergies ___.

b. decreases and then

a.decreases, only :
INncreases

. increases and then
decreases

d. remains the same




IUse the following diagram to answer question Neglect the effect of resistance

forces.

A D

[ Ny

The object will have a minimum gravitational potential energy at point __.

a. A c.C d.D e.E



lUse the following diagram to answer question Neglect the effect of resistance

forces.

A D

w

The object’s kinetic energy at point Cis less than its kinetic energy at point ___.

LAonly  b.A.D.andE d.DandE



Momentum

The momentum of a particle 1s defined as the product of its mass times its
elocity. It 15 a vector quantity. The momentum of a system 1s the vector sum of
he momenta of the objects which make up the system. If the system 15 an
1solated system, then the momentum of the system 15 a constant of the motion
and subject to the principle of conservation of momentum.

The most common symbol for momentum 15 p. The SI unit for momentum 15 kg

momentum = mass x velocity
p =m x V




Conservation of Momentum

The momentum of an 1solated system 15 a constant. The vector sum of the momenta mv of all
the objects of a system cannot be changed by mteractions within the system. This puts a
strong constraint on the types of motions which can occur in an 1solated system. If one part of
the system 15 given a momentum in a given direction, then some other part or parts of the
system must simultaneously be given exactly the same momentum mn the opposite direction.
As far as we can tell, conservation of momentum 1s an absolute symmetry of nature. That 1,

we do not know of anything in nature that violates it.




Elastic and Inelastic Collisions

A perfectly elastic collision 1s defined as one in which there 15 no loss of kinetic energv in
the collision. An inelastic collision 1s one in which part of the kinetic energy 1s changed to

some other form of energy 1n the collision.

An elastic collision 1s defined as one 1n which both conservation of momentum and

conservation of kinetic energy are observed. This implies that there 1s no dissipative force
acting during the collision and that all of the kinetic energy of the objects before the
collision is still in the form of kinetic energy afterward.

Collisions between hard spheres may be nearly elastic, so 1t 1s useful to calculate the
limiting case of an elastic collision. The assumption of conservation of momentum as well
as the conservation of kinetic energy makes possible the calculation of the final velocities in
two-body collisions.

Before After




Elastic Collision, Equal Masses

For a head-on collision with a stationary object of equal mass, the projectile will come to rest
and the target will move off with equal velocity, like a head-on shot with the cue ball on a
pool table. This may be generalized to say that for a head-on elastic collision of equal
masses, the velocities will always exchange.

Before After
vasel:m, = m; m, m, : m m,
If not head-on then 6 = 90° S—— 5
® Vi ¢ . ("_
. Velocities exchange

For a non-head-on elastic collision between equal masses, the angle

between the velocities after the collision will always be 90 degrees.
[[ H___ﬁgﬂ} .5”:'.:.

The spot on a pool table 1s placed so that a collision with a ball on the

spot which sends 1t to a corner pocket will send the cue ball to the
other corner pocket.




Elastic Collisions - Target Initially at Rest*

Before : After *This can actuall
: _ A
@ v apply to all elastic
- Mo collisions since we
vy .‘ can always choose

: a reference frame

betore the collision.
General relationships:

a. Conservation of momentum: ﬂil‘:’l = M, ':"l + mzﬁ' 4

b. Conservation of kinetic energy: l 2 _ l 2 l 2
(elastic collision assumption)
m, — m 2m
¢. For head-on collisions: p'l - ( ! 3) oL V', = ! v,
(m, + m,) (m, + m,)

d. For head-on collisions the velocity of approach is equal to the velocity
of separation.



Elastic Collision, Massive Projectile

In a head-on elastic collision where the projectile 1s much more massive than the target, the

velocity of the target particle after the collision will be about twice that of the projectile and
the projectile velocity will be essentially unchanged.
Before After

m

1

Case ll: my >> m,
If not head-on then 6 < 90°




Elastic Collision, Massive Target

In a head-on elastic collision between a small projectile and a much more massive target, the
projectile will bounce back with essentially the same speed and the massive target will be
given a very small velocity. One example 1s a ball bouncing back from the Earth when we
throw 1t down.

Case lll: m,<<m, Before . After

My
If not head-on then 6 > 90° . :
e —l-
‘uf = - ‘I.I"
2- D ‘Hr12 == ()

In the case of a non-headon elastic collision, the angle of the projectiles path after the
collision will be more than 90 degrees away from the targets motion.



Head-on Elastic Collisions

Before After
: @ b
V1 E e =TT m
- :-F__- 2
(- - @6
m1 mg i --"-*_‘-‘
¥ ‘u"1
I 1
Before After
Case I: m, = m, m, m,, m, m,
If not head-on then 8 = 90* -
. Velocities exchange
Before After

Case ll: my >> m
If not head-on then 6 < 90°

b

Case Ill: m,<<m, Before

If not head-on then 8 > 90° T
R ‘ ) :
"ul’2= o -




Inelastic Collisions

Perfectly elastic collisions are those in which no kinetic energy 1s lost 1n the collision.
Macroscopic collisions are generally inelastic and do not conserve kinetic energy, though of
course the total energy is conserved as required by the general principle of conservation of
energy. The extreme inelastic collision 1s one in which the colliding objects stick together
after the collision, and this case may be analvzed in general terms:

_.__o{\v}

Before
Momentum ITI1 U-|

Kinetic energy 15 m, v 2

17

From conservation of momentum:

m, V= i:|1"l,I + M, v, :D Vo

I'TI+I'T"I

After

{l'l"l_I + FI'IE}VE

1 2
: (m1 + M)V,

Ratio of kinetic energies before
and after collision:
I"{Ef r‘l‘l1

HEi I"I"I1 + I'I"'I2

Fraction of kinetic energy
lost in the collision:

HEi-HEf _ m,,

I-{E.I m, +m




K.E. Lost in Inelastic Collision

‘o @ Wt @

From conservation of momentum:

+FI"I

I"i"'l1

m, vy= (M, + my)v, |:I> N e
1 2

The ratio of kinetic energies before and after is:

m 2
= (M, + m,) : >
KE; 2 1 2 m, +m, _ m
EE. Al 2 m_, + m
i > m U_1 1 2
The fraction of Kinetic energy lost is:
K= KE. m_, + m

I I 1 2



Impulse of Force

The product of average force and the time it 1s exerted 1s called the impulse of force. From
Newton's second law

Av

I = M = M —
average average ,ﬁf

the impulse of force can be extracted and found to be equal to the change 1n momentum of
an object provided the mass 1s constant:

Impulse = F,, At = mAy
The main utility of the concept 1s in the study of the average impact force during collisions.
For collisions, the mass and change 1n velocity are often readily measured, but the force
during the collision 1s not. If the time of collision can be measured, then the average force of
impact can be calculated.



Minimizing Impact Force

The process of minimizing an impact force can be approached from the definition of the
impulse of force:

Extend time
of collision

Impulse = F Atl =mAv

average _
For a given change
Reduce average in momentum, the

impact force impulse stays
constant.

If an impact stops a moving object, then the change 1n momentum 1s a fixed quantity, and
extending the time of the collision will decrease the impact force by the same factor. Thas
principle 1s applied in many common-sense situations:

e If you jump to the ground from any height. vou bend vour knees upon impact,
extending the time of collision and lessening the impact force.

e A boxer moves away from a punch, extending the time of impact and lessening the
force.

e Automobiles are made to collapse upon impact, extending the time of collision and
lessening the impact force.



Alternatively, the same scenario can be examined with the aid of the work-energy principle.

Extend distance
of collision

|

d' =-—m’ T

avg

2 For a given change
in kinetic energy,
the work required
stays constant.

Reduce average
impact force

An impact which stops a moving object must do enough work to take away 1ts kinetic
energy, so extending the distance moved during the collision reduces the impact force.



Truck Collision

f,— Ride in the bigger truck!
A

=

vQ—— o'~ piliegm

In a head-on collision the forces on the two vehicles are constrained to be the

same by Newton's third law. But from both Newton's second law and the

work-energy principle it becomes evident that it 1s safer to be 1n the bigger

m. _.Av
Big truck fittle truck
% The change in velocity of the driver will

E be the same as the truck 1n which he/she

g truck —  little truck S _ i
m a is riding. A greater change in velocity
I-II =m ||'|'|'II'-' '||.'I'J:

Big rruck implies a greater change in kinetic

truck.

energy and therefore more work done on
the driver.



Truck Collision

'
¥
]

In a head-on collision:

Whic!
Whic!
Whic!
Whic!
Whic!
Whic!

1 truc
1 truc
1 truc
1 truc
1 truc

1 truc

| experience the greatest force?

| experience the greatest impulse?

| experience the greatest change in momentum?
| experience the greatest change in velocity?

k will experience the greatest acceleration?

Wi
Wit

Wi
Wit

k would you rather be in during the collision?



Comparison of the collision variables for the
two trucks:

e

W

———

Force
frmpulse

Change in
FIE RIS I LEFPT

Accelercarion

NV
1l

In a head-on collisior:

MNMewton's thaird lassr
dictates that the forces on
the trucks are egual but
opposite 1in directior.

Impulse 1s force
multiplied by time_ and
time of contact 1s the
same for both_. so the
impulse 1= the same 1n
magrmitude for the two
truacks Change 1n
momentum 1s eqgual to
impulse so changes 1n
momenta are egual. With
equal change 1n
mormentum and smmaller
mass_ the change in
wvelocity 1s larger for the
smaller truck. Since
acceleration 1s change 1n
wvelocity owver change 1n
tirme_ the acceleration 1s
oreater for the smaller
truck .

Ride in the bigger truck! There are good phvsical reasons!




Forces in Car Crashes

What force is required to stop

the car in a distance of one foot?
What force will be exerted on

the driver? With and without seatbelt?

T

Car collapses one
foot upon impact.

Initial 1 Work 1
kinetic El'i"l‘lul"E required to Favgd - Erﬂ‘d’z
energy stop the car



Example of Force on Car

What effect would it

Weight of car = 3200 Ib = 14,230 N have on the impact force

W 3200 Ib
e R = = if the car were more
rigid, collapsing only
—_— 6 inches?
) F..d=-+- required to
- ] 2 2 MV stop the car
= 2
KEnitial = MV d F. = -+mv?
avg —
Velocity = 30 mi/hr = 44 ft/s d
1 2
KE =—(100 slugs)(44 ft/s
5 ( gs)( ) Favg= 96,?uf? ftb _ 96800 Ib
KE = 96,800 ft Ib 48 4 tons|
= 48.4 tons!

d = 1 foot after impact

(This mnitial example 1s cast in U.S. common units because most U S. readers can make
comparisons to known forces more easily 1n those terms. The calculation provides the results
in 51 units as well.)



Airplane & Duck Estimates

For the airplane and duck force estimate, the mass of the duck 1s determined. but the change

in velocity and time of collision must be estimated 1in order to estimate the average impact
force.

The change 1n velocity of the duck 1s estimated to be 600 muvhr = E80 ft's by assuming a
head on collision, assuming that the duck 1s riding with the airliner after the collision, and

assuming that the duck's velocity 1s negligible compared to that of the airliner, the "hovering
duck” approximation.

Av
average mn Af

e o

‘.._
600 mi/hr

The time of collision i1s assumed to be the time of transit of the duck’'s dimension of 1 foot. so

1/880 second.



Airplane and Duck

Estimate the average impact force between an airliner traveling at 600 miyhr and a 1 pound
duck whose length 1s 1 foot. This 15 an example of the use of impulse of force.

Impulse = F At = mAv

average

average Ar

—_—
600 mi/hr

How much
impact force?

How do you make a reasonable estimate of
the parameters involved?



Airplane & Duck Force Estimate

For the airplane and duck force estimate, the mass of the duck 1s needed. but the weight 1n
the U. 5. Commeon svstem of units 1s given. The mass 1s

W 1ib 1
m=—= — = —slug
g 32ft/s® 32

average ﬂt

— -
600 mi/hr

12 tons
of impact!??

Il s;ug‘ 1880 1t / s
32
F Ll o :.l':
average 1

330*]
=12.1tons = 107,650N

= 24,200 pounds

F;'I'l'vr:‘l"ﬂg{-’



Q8.1
A ball (mass 0.40 kg) 1s

initially moving to the Before < 0 () m= 040 kg
left at 30 m/s. After

hlttlng .the wall, the ball Ao O——s
1s moving to the rightat  — Vax= 1 20m/s
20 m/s. What is the S

impulse of the net force A. 20 kg * m/s to the right
on the ball during its

collision with the wall? B. 20 kg« m/s to the left

C. 4.0 kg » m/s to the right
D. 4.0 kg » m/s to the left

E. none of the above
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A8.1
A ball (mass 0.40 kg) 1s

.« e . V1x ==30 /s

initially moving to the Before -— / () m= 040 kg
left at 30 m/s. After

hlttlng .the wall, the ball . O——s
18 moving to the rightat = - Vax= + 20m/s
20 m/s. What is the o

impulse of the net force J A. 20 kg * m/s to the right
on the ball during its

collision with the wall? B. 20 kg * m/s to the left

C. 4.0 kg » m/s to the right
D. 4.0 kg » m/s to the left

E. none of the above
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Q8.2

You are testing a new car using crash test dummies. Consider two
ways to slow the car from 90 km/h (56 mi/h) to a complete stop:

(1) You let the car slam into a wall, bringing it to a sudden stop.

(1) You let the car plow into a giant tub of gelatin so that it comes
to a gradual halt.

In which case 1s there a greater impulse of the net force on the car?

A. 1n case (1)
B. in case (11)
C. The impulse 1s the same in both cases.

D. not enough information given to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A8.2

You are testing a new car using crash test dummies. Consider two
ways to slow the car from 90 km/h (56 mi/h) to a complete stop:

(1) You let the car slam into a wall, bringing it to a sudden stop.

(1) You let the car plow into a giant tub of gelatin so that it comes
to a gradual halt.

In which case 1s there a greater impulse of the net force on the car?

A. 1n case (1)
B. in case (11)
J C. The impulse 1s the same in both cases.

D. not enough information given to decide
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Q8.3

A 3.00-kg rifle fires a 0.00500-kg bullet at a speed of 300
m/s. Which force is greater in magnitude:

(1) the force that the rifle exerts on the bullet; or
(11) the force that the bullet exerts on the rifle?
A. the force that the rifle exerts on the bullet
B. the force that the bullet exerts on the rifle

C. both forces have the same magnitude

D. not enough information given to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A8.3

A 3.00-kg rifle fires a 0.00500-kg bullet at a speed of 300
m/s. Which force is greater in magnitude:

(1) the force that the rifle exerts on the bullet; or
(11) the force that the bullet exerts on the rifle?
A. the force that the rifle exerts on the bullet
B. the force that the bullet exerts on the rifle
J C. both forces have the same magnitude

D. not enough information given to decide
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Q8.4
Two objects with different
masses collide and stick to
each other. Compared to N_’
before the collision, the

system of two objects after
the collision has

A. the same total momentum and the same total kinetic energy.
B. the same total momentum but less total kinetic energy.

C. less total momentum but the same total kinetic energy.

D. less total momentum and less total kinetic energy.

E. not enough information given to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A8.4
Two objects with different
masses collide and stick to
each other. Compared to S_’
before the collision, the

system of two objects after
the collision has

A. the same total momentum and the same total kinetic energy.
J B. the same total momentum but less total kinetic energy.

C. less total momentum but the same total kinetic energy.

D. less total momentum and less total kinetic energy.

E. not enough information given to decide
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Q8.5

Two objects with different
masses collide and bounce
off each other. Compared N_’
to before the collision, the

system of two objects after
the collision has

A. the same total momentum and the same total kinetic energy.
B. the same total momentum but less total kinetic energy.

C. less total momentum but the same total kinetic energy.

D. less total momentum and less total kinetic energy.

E. not enough information given to decide
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A8.5
Two objects with different
masses collide and bounce
off each other. Compared S_’
to before the collision, the

system of two objects after
the collision has

A. the same total momentum and the same total kinetic energy.
B. the same total momentum but less total kinetic energy.

C. less total momentum but the same total kinetic energy.

D. less total momentum and less total kinetic energy.

J E. not enough information given to decide
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Q8.6

Block A has mass 1.00 kg and block B has mass 3.00 kg. The
blocks collide and stick together on a level, frictionless surface.

After the collision, the kinetic energy (KE) of block A is
A. 1/9 the KE of block B.
B. 1/3 the KE of block B.
C. 3 times the KE of block B.
D. 9 times the KE of block B.
E. the same as the KE of block B.
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Block A has mass 1.00 kg and block B has mass 3.00 kg. The
blocks collide and stick together on a level, frictionless surface.
After the collision, the kinetic energy (KE) of block A is
A. 1/9 the KE of block B.
J B. 1/3 the KE of block B.
C. 3 times the KE of block B.
D. 9 times the KE of block B.

E. the same as the KE of block B.
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Q8.7
Block A on the left has mass 1.00 kg. Block B on the right

has mass 3.00 kg. The blocks are forced together,
compressing the spring. Then the system is released from
rest on a level, frictionless surface. After the blocks are

released, the kinetic energy (KE) of block A 1s

m, = 1.00 kg mg = 3.00 kg
S

NI

A. 1/9 the KE of block B. B. 1/3 the KE of block B.
C. 3 times the KE of block B. D. 9 times the KE of block B.
E. the same as the KE of block B.
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Block A on the left has mass 1.00 kg. Block B on the right
has mass 3.00 kg. The blocks are forced together,
compressing the spring. Then the system is released from
rest on a level, frictionless surface. After the blocks are

released, the kinetic energy (KE) of block A 1s

m, = 1.00 kg mg = 3.00 kg
S

NI

A. 1/9 the KE of block B. B. 1/3 the KE of block B.
J C. 3 times the KE of block B. D. 9 times the KE of block B.
E. the same as the KE of block B.
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Q8.9

A yellow block and a red rod are joined together. Each object 1s
of uniform density. The center of mass of the combined object 1s
at the position shown by the black “X.”

Which has the greater mass, the yellow block or the red rod?

x—

A. the yellow block
B. the red rod

C. they both have the same mass

D. not enough information given to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley
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Rotational Motion

Angular Velocity

Axis
of rotation

@ = 2T f

f = frequency in
revolutions/s

Angular velocity can be considered to be a vector
qgquantity, with direction along the axis of rotation 1n the
rmoht-hand mle sense.

For an object rotating about an
axis_ every point on the object has
the same angular velocity. The
tangential velocity of any point 1s
proportional to 1ts distance from
the axis of rotation. Angular
wvelocity has the unats rad./s.

V= oy or o)y = —

Angular velocity 1s the rate of
change of angular displacement
and can be descrnibed by the
relationship

NG
m-rl"l't‘.l‘-rl‘_i{-l:" - &r

and i1f v 15 constant. the angle can
be calculated firom

o =8, + wr



Rotation Vectors

Angular motion has direction
associated with 1t and is

inherently a vector process.
Wrap the right hand But a point on a rotating
around the axis of wheel 1s continuously
frf:r’tatlr::n 30 that :_he sense of changing direction and it 1s
Bl S rotation of inconvenient to track that

in the direction of
rotation. The thumb
points in the direction
of the angular velocity

the wheel

direction. The only fixed,

unique direction for a
rotating wheel 15 the axis of

rotation, so it 1s logical to
choose this axis direction as
the direction of the angular
wvelocity. Left with two
choices about direction, it 1s

vector.
~N

customary to use the right
() hand rule to specify the
/ direction of angular
A”QU]IEF The right hand quantities.
velocity rule for angular

vector. quantities.



Basic Rotational Quantities

S = arc length The angular

displancment 1s
defined by

o="
r

For a circular path it
follows that the

ancular velocity 1s

Since for a full circle S=2mr,
then 2 radians = 360° and
one radian = 180/t degrees
= 57.3°.

and the angular
acceleration 1s

o = —
¥

In addition to any tangential acceleration_ there 1s always the
centripetal acceleration:

where the acceleration
V here 1s the tangential
ad. — acceleration.




Description of Rotation

Fotation 1s described in terms of angular displacement | time | angular velocity, and angular
acceleration . Angular velocity 1s the rate of change of angular displacement and angular
acceleration is the rate of change of angular velocity. The averages of velocity and
acceleration are defined by the relationships:

 _ A®
Average angular velocity: ) = I
r

_—  Aw

Average angular acceleration: Of = ——

At

where the Greek letter delta indicates the change in the quantity following 1t

acceleration.

— . W, +®
1. 8 = wr w = —2
2 A bar above any quantity indicates
. the average value of that quantity. If

2. m—mﬂ+ﬂf r===-==-=-=------- @15 constant, equations 1.2 and 3

1 : Equations 1 represent a complete description of
3 8 = ﬂ'}”f -+ — ﬂfz  for constant . the rotation. Equation 4 is obtained

2 » angular ' by a combination of the others.

; 3

4. > = mﬁ + 20



Torque

A torque 1s an influence which tends to change the rotational motion of an
object. One way to quantify a torque 1s

Torque = Force applied x lever arm

The lever arm 1s defined as the perpendicular distance from the axis of rotation
to the line of action of the force.

Wrench kength
20 cmn

Same force,
Force

= less torque.

oLk Torque = {120 N}0.2m) 120N
raccimum — 54 Nm .
effectiveneass v Torgue

in producing 15 om I:: 18 MM
torque If it ks } B Same an?:&. B

exeried no torque!! ;'-'ranci-u length e
perpendicular —— D0 oM = kaver anrm _,l Force 0 cm -

to the wrench. 120 M ! - 1§ﬂmr'-a.l

Diraction of 120 M force passes
through axis, so tha lever arm is Zero,

Three examples of torque exerted on a wrench of length 20 cm.



Moment of Inertia

Moment of inertia 1s the name given to rotational inertia, the rotational analog
of mass for linear motion. It appears in the relationships for the dynamics of
rotational motion. The moment of inertia must be specified with respect to a
chosen axis of rotation. For a point mass the moment of mnertia 1s just the mass

times the square of perpendicular distance to the rotation axis_ [ = mr~. That
point mass relationship becomes the basis for all other moments of inertia since
any object can be built up from a collection of point masses.

Linear F = mua

Mewton's Second
Law

Angular T = /X

Linear p=mv
Momentum

Angular L=/

Moment
of Inertia

[

Linear  gp = 1’

ﬂ

Kinetic Energy

, | .
Angular KbE= S /m

Fle!

LIHEErF d= ﬂ[ ﬂ'ﬂ’]
Work-Energy

Angular Tpe =4 [% la 2}



Moment of Inertia, General Form

Since the moment of inertiia of an ordinary object involves a continuous
distribution of mass at a continually varyving distance from any rotation axis_
the calculation of moments of 1inertia generally involwves calculus, the
discipline of mathematics which can handle such continuous variables. Since
the moment of inertia of a point mass 1s defined bw

- cixes oaf Fr
I = mr PerTelTEerre F '

then the moment of inertia contribution by an Infinitesmal mass element dm
has the same form. This kind of mass element 1s called a differential element
of mass and 1ts moment of 1nertia 1s given by

_ = The “d* precaeding any quantity denotes a
-::.lr dl = r-dm vanishingly small or “"differential” amount of it.

rotation axis

MNote that the differential element of moment of inertia dI must alwavs be
defined with respect to a specific rotation axis. The sum owver all these mass
elements 1s called an integral over the mass._

A
J = _[df :J' el
ik

Usuallv, the mass element dm will be expressed in terms of the geometrv of
the object, so that the imtegration can be carmed out over the object as a
whole (for example., over a long uniform rod).



Moment of Inertia Examples

Moment of inertia 15 defined with respect to a specific rotation axis. The
moment of inertia of a point mass with respect to an axis 1s defined as the
product of the mass times the distance from the axis squared. The moment of
inertia of any extended object 1s built up from that basic definition. The general
form of the moment of mmertia involves an integral.

For a point mass the moment of inertia is just

F 3 the mass times the radius from the axis sguared.
L= I =mr F llection of poi o) th
or a collection of point masses (below) the
n moment of inertia is just the sum for the masses.
. For an object with an axis of symmetry, the
4y I = kmr~ moment of inertia is some fraction of that which
it would have if all the mass were at the radius r.

P, m
.Ir f . = r| =
,E_-:"' = *.m I = Zm,.r}‘ =mr; +myr g + ..
2 2

F, " ; Sum of the peint mass moments of inertia.
i E)

M Confinuous mass distributions reguire an infinite
I = j 2 oy 59 of all the point mass moments which make
Arm up the whole. This is accomplished by an
e 0

: : integration over all the mass.
rotaion axis




Common Moments of Inertia

Hod about
Solid cylinder or Hoop about canter
disc, syrm metry axis symmetry axis /
/ 2
= MR' I = MR* I =—ML
2 12
[ == MR* f ; ,
4 Ll a2 1=MR? I==MR* I=—MI?
]2 2 3 3
Solid cylinder, Hoop about Thin spherical Rod about

central diameter diameter sheall and



Rotational-L.inear Parallels

Linear Motion

Position X
Velocity v
Acceleration '

Motion equations X — Ff
v =, + il
I -
X =Vl +—ar”
2
“ 2
v = vy + 2ax
Mass (linear inertia) FH

Newton's second law F = FHcd

Momentum P=myv
Work Fd

] -
Kinetic energy E FrIV -

Power F V

Rotational Motion

e

)
X

0= ot
0 = (0, + ot

8 =@t + 1 a2
2

> = " + 20

Angular position
Angular velocity
Angular acceleration

Motion equations

Moment of inertia
Mewton's second law

Angular momentun

Work

Kinetic energy

Power



Equilibrium
Conditions for Equilibrium

An object at equilibrium has no net influences to cause it to move, either in
translation (linear motion) or rotation. The basic conditions for equilibrium are:

1. Net =0 x and y components of force
may be separately set = 0.

Forces left = forces right
Forces up = forces down.

2 Net =0 The axis may be chosen for advantage
to eliminate some unknown forces..

The sum of the clockwise torques is equal
to the sum of the counterclockwise torgues.

The conditions for equilibrium are basic to the design of any load-bearing
structure such as a bridge or a building since such structures must be able to
maintain equilibrium under load. They are also important for the study of
machines, since one must first establish equilibrium and then apply extra force
or torque to produce the desired movement of the machine. The conditions of
equilibrium are used to analyze the "simple machines” which are the building
blocks for more complex machines.




Find the tensions
required to support
the mass m

Force Equilibrium Example

Force equilibrium problems like this can be analyzed by drawing a free-body diagram of the
point of attachment of the mass m, since 1t must be at equilibrium. The tensions should be
resolved into horizontal and vertical components to apply the force equilibrium condition.

e aen e e naneaann | The sum of the

“ upward components
T] SIN ot 4 / of tension must
x?} sin 3 :| support the weight.
Find the tensions  © 2 - - = Fﬁ :
i ) cosa cospf
rzqu"Ed ‘o support ] ’ il The horizontal
alilubiel mo 4 components are
'}| . R mg ] constrained to be
! . \ /| equal to each other.
Eﬁ =0:T\sina+Tysinff=mg "
EFI =0:Ticosa =T,cos
' cosa m
“ =i Iy = L{iu
COS . 08 .
p sina + sin



Force Equilibrium Example

Force equilibrium problems like this can be analyzed by drawing a free body diagram of the

point of attachment of the mass m, since 1t must be at equilibrium. The tensions should be
resolved into horizontal and vertical components to apply the force equilibrium condition.

m

Find the required H
tensions if one i

cable is horizontal. E Fy _ 0 : Ti SIHH - mg TI SiI]H Tl
EF;. =0:Tcost =T, TEDSH T: ‘ L
m

TI — Jin_g ng
sind

Find the required
tensions if one
cable is horizontal.



Force Equilibrium Example

Force equilibrium problems like this can be analyzed by drawing a free body diagram of the
point of attachment of the mass m_ since 1t must be at equilibrium_ The tensions should be
resolved into honizontal and vertical components to apply the force equilibrium condition.

) SFy=0:TcosO=mg .. T= —2
T'cosd J cost
Y>F.=0:Tsinf=F ... F =mgtan6

Find the force required
to pull the mass out
totheangle 6.

F<—@—Tsinf

mg

Y

Find the force required
to pull the mass out
to the angle 0.

Weight = mg




T 1 4

Supporting an extended object.

Supporting an Extended L.oad

For an extended system to be at equilibrium_ the sum of the forces must be equal to zero and
the sum of torgues about any axis must equal zero. It i1s logical to choose one of the ends as
the axis since that eliminates one of the unknown forces (lever armm — zero). Considering a
long uniform wooden board, note that the mass of the board can be considered to be
comncentrated at 1ts center of mass for the purposes of calculating torque. For a uniform board,

the center of mass 1s at 1ts geometrical center, so the lever arm with respect to either end of
the board will be L/2. Choosing the left end as the axis_ the torgue and force equilibrium
egquations are shown below.

chosen
axis™

7 borard

Wbﬂard — mbﬂfﬂ'd g

= I3 |
L
Wlx + wz:-ﬁard - ‘F":"L
2 s
['Fr‘:"m T{‘kﬁ.'kn'f.&'e - T¢'r;mr.l'-r_*rc‘hu*kuf:.'.r.*}

Fo+ F, =W, +W,

Beacared

(from forces up = forces down)



Determining the Mass of an Extended Oject

The mass of an extended object can be found by using the conditions for equilibrium of
torques. If the object 1s first balanced to find its center of mass, then the entire weight of the
object can be considered to act at that center of mass. If the object is then shifted a measured
distance away from the center of mass and again balanced by hanging a known mass on the
other side of the pivot point, the unknown mass of the object can be determined by balancing

the torques.

I E” ounterclockwse B Fcclockwise
Mass of an extended object. L
2
[ L=< cm

m, gL, =mgL, W

Ymg

Mass of an extended object.



Balancing the boom.

Support of a Boom

The support of a pivoted, uniform boom with a cable 1s a standard exercise in equilibrium of
torques. Using a pivot at the wall, which is assumed to exert no torque, the torque equation 1s
that shown below. The forces exerted on the boom are then obtainable from the force
equation shown. The lever arm for the cable tension T must be obtained from the triangle as
shown since the cable is not perpendicular to the boom.

o~
X7 sin
4 e toneton rt‘fm‘kn't'xr = I:'mm.rc*r:'E.-n'km'.-.-r
F,-I' ;_ cable tension 7 T
P | I W,x,+ W x, +W, —=Tx,sinf
4 272 )
T
‘ Wy=mg W =mg
2 2
W — L F, =T cosf
oy | |
X5 7 - E, =W, +W,+W, -Tsinf
| 2




Q10.1

AL, AF,

The four forces shown all have the
same magnitude: F, =F,=F,=F,.
Which force produces the greatest F,
torque about the point O (marked Fy Ny
by the blue dot)?

A F,

B. F,

C. F,

D. F,

E. not enough information given to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.1

Al AF,
The four forces shown all have the
same magnitude: F, =F,=F,=F,.
Which force produces the greatest F,
torque about the point O (marked Fy Ny
by the blue dot)?
J A F,

B. F,

C. F,

D. F,

E. not enough information given to decide
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Q10.2

A F
Which of the four forces shown
here produces a torque about O that
1s directed out of the plane of the -
2

drawing?

A.F,
B. F,
C.F,
D. F,

E. more than one of these

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley




A10.2

A F
Which of the four forces shown
here produces a torque about O that
1s directed out of the plane of the -
2

drawing?

A.F,
B. F,

C.F,

Vor

E. more than one of these
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Q10.3

A plumber pushes
straight down on the
end of a long wrench
as shown. What is the
magnitude of the
torque he applies about

the pipe at lower right?
A. (0.80 m)(900 N)sin 19°
B. (0.80 m)(900 N)cos 19°
C. (0.80 m)(900 N)tan 19°

D. none of the above

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.3

A plumber pushes
straight down on the
end of a long wrench
as shown. What is the
magnitude of the
torque he applies about

the pipe at lower right?
A. (0.80 m)(900 N)sin 19°
JB. (0.80 m)(900 N)cos 19°
C. (0.80 m)(900 N)tan 19°

D. none of the above
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Q10.4

A force F = (4{ + 3JA' )N acts an object at a point

located at the position I = (6/€ )m

What is the torque that this force applies about the origin?

A. zero
(24: +18 J)N[tn

c. (- 241—18])N[tn
D. (-18i +24}]N[1n
. (18

183 24, Nlm
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A10.4

A force F = (4; + 3JA' )N acts an object at a point

located at the position I = (6/€ )m

What is the torque that this force applies about the origin?

A. zero

B. (241 +185 )N
( 241—18])N[tn

JD (~18i +24}]N[1n

(18

183 24, Nlm

E.
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Q10.5

A glider of mass m, on a frictionless horizontal track is connected
to an object of mass m, by a massless string. The glider accelerates

to the right, the object accelerates downward, and the string rotates
the pulley. What is the relationship among 7T, (the tension in the

horizontal part of the string), 7, (the tension in the vertical part of
the string), and the weight m,g of the object?

Amg=T,=T, i 1 /
B.mg>T,=T, j } /@R
C.mg>T,>T, o T,
D.mg=T,>T, m,

E. none of the above

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.5

A glider of mass m, on a frictionless horizontal track is connected
to an object of mass m, by a massless string. The glider accelerates

to the right, the object accelerates downward, and the string rotates
the pulley. What is the relationship among 7T, (the tension in the

horizontal part of the string), 7, (the tension in the vertical part of
the string), and the weight m,g of the object?

Amg=T,=T, i 1 I

B.mg>T,=T, j } /@R
JC. mg>T,>T, o 1)

D.mg=T,>T, m,

E. none of the above
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Q10.6

A lightweight string is wrapped several

times around the rim of a small hoop. If b0

the free end of the string 1s held in place — @

and the hoop 1s released from rest, the A

string unwinds and the hoop descends.

How does the tension in the string (7)

compare to the weight of the hoop (w)? 0.0800 m

B.T>w
C.T<w

D. not enough information given to decide

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.6

A lightweight string 1s wrapped several

times around the rim of a small hoop. If %
the free end of the string 1s held in place — @
and the hoop 1s released from rest, the A

string unwinds and the hoop descends.

How does the tension in the string (7)

compare to the weight of the hoop (w)? 0.0800 m

A.T=w

B.T>w

JC.T<W

D. not enough information given to decide
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Q10.7

A solid bowling ball rolls T —

down a ramp.

Which of the following forces M\ |
exerts a torque on the bowling >~

ball about its center? —J,;//

A. the weight of the ball
B. the normal force exerted by the ramp
C. the friction force exerted by the ramp

D. more than one of the above

E. The answer depends on whether the ball rolls without slipping.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.7

A solid bowling ball rolls
down a ramp.

Which of the following forces
exerts a torque on the bowling
ball about its center?

A. the weight of the ball

B. the normal force exerted by the ramp
J C. the friction force exerted by the ramp

D. more than one of the above

E. The answer depends on whether the ball rolls without slipping.
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Q10.8

A yo-yo 1s placed on a horizontal —

surface as shown. There 1s
sufficient friction for the yo-yo to
roll without slipping. If the string

1s pulled to the right as shown,

A. the yo-yo rolls to the right.
B. the yo-yo rolls to the left.
C. the yo-yo remains at rest.

D. The answer depends on the magnitude F' of the pulling
force compared to the magnitude of the friction force.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.8

A yo-yo 1s placed on a horizontal —

surface as shown. There 1s
sufficient friction for the yo-yo to
roll without slipping. If the string

1s pulled to the right as shown,

J A. the yo-yo rolls to the right.
B. the yo-yo rolls to the left.
C. the yo-yo remains at rest.

D. The answer depends on the magnitude F' of the pulling
force compared to the magnitude of the friction force.
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Q10.9

A yo-yo 1s placed on a horizontal
surface as shown. There 1s
sufficient friction for the yo-yo to
roll without slipping. If the string
1s pulled to the right as shown,

A. the yo-yo rolls to the right.
B. the yo-yo rolls to the left.
C. the yo-yo remains at rest.

D. The answer depends on the magnitude F' of the pulling
force compared to the magnitude of the friction force.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.9

A yo-yo 1s placed on a horizontal
surface as shown. There 1s
sufficient friction for the yo-yo to
roll without slipping. If the string
1s pulled to the right as shown,

J A. the yo-yo rolls to the right.
B. the yo-yo rolls to the left.
C. the yo-yo remains at rest.

D. The answer depends on the magnitude F' of the pulling
force compared to the magnitude of the friction force.
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Q10.10

A yo-yo 1s placed on a horizontal
surface as shown. There 1s

sufficient friction for the yo-yo to
roll without slipping. If the string

1s pulled straight up as shown,

A. the yo-yo rolls to the right.
B. the yo-yo rolls to the left.
C. the yo-yo remains at rest.

D. The answer depends on the magnitude F' of the pulling
force compared to the magnitude of the friction force.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



A10.10

A yo-yo 1s placed on a horizontal
surface as shown. There 1s

sufficient friction for the yo-yo to
roll without slipping. If the string

1s pulled straight up as shown,

J A. the yo-yo rolls to the right.
B. the yo-yo rolls to the left.
C. the yo-yo remains at rest.

D. The answer depends on the magnitude F' of the pulling
force compared to the magnitude of the friction force.
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Q10.11

A spinning figure
skater pulls his arms
in as he rotates on the
ice. As he pulls his
arms 1n, what
happens to his
angular momentum L
and kinetic energy K?

K \
A\ |

' 8s Pearson Addis

A. L and K both increase.

B. L stays the same, K increases.

C. L increases, K stays the same.

D. L and K both stay the same.
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Al10.11

A spinning figure
skater pulls his arms
in as he rotates on the
ice. As he pulls his
arms 1n, what
happens to his
angular momentum L
and kinetic energy K?

A. L and K both increase.
J B. L stays the same, K increases.

C. L increases, K stays the same.

D. L and K both stay the same.
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Directions of Angular Quantities

In this case the torque

T = Fr=I1u
acts to speed up the
rotation, giving Aw in
the direction shown.
Since AWM

[I —_—
Al
it follows that
the torque vector
IS also in the
)

axis directinn./

'&{2—" L=Iw

T=1x

A an example of the
dirtections of angular quantities,
consider a wvector anmular
velocity as shown. If a force
acts tangential to the wheel to

speed it up, it follows that the

change mn angular velocity and
therefore the angular

acceleration are m the direction
of the azns. Mewton's 2nd law
for rotation nplies that the

torgque 18 also i the ams
direction. The angular
motmentum will also be in this
direction, so in thiz example, all
of these angular quantities act
along the ams of rotation as

showm,



Angular Momentum of a Particle

The angular momentum is the
same at every point on an

orbit. When it
is closer, it
increases
speed.

- -
iiiii
--------------
-----

L
L ]
______
-

The angular momentum of a patticle of
mass m with respect to a chosen orgin 13
given by

LL=mvr s 0

ot mote formally by the vector product

L=rxp

The direction 15 given by the nght hand
rule which would grve L the direction out
of the diagramm. For an orbat, angular
motmentiumn 15 conserved, and this leads to
one of Eepler's laws. For a circular orbit,

L becomes

L =mvr



Angular Momentum

The angular motnentum of a ngid object 15 defined as the product of the meoment of inertia and the
anmilar welocity, It 13 analogous to near momentuin and 15 subject to the fundamental constraints of
the conservation of angular momentum pronciple ff there 13 no external torque on the object. Angular

motnentuim 15 a vector quantity. It 15 derivable fromm the expression for the angular momentum of a
patticle

sense of
rotation of
the wheel
(1)
Angular —  Moment of X Angular
Momentum Inertia Velocity
‘m/ L = | X )
L = lo The right hand
Anaul rule for angular
ngular quantities.
momentum

vector.



Angular and Linear Momentum

Anmular momentumn and knear momentum are exatples of the parallels between lnear and rotational
motion. They have the same form and are subject to the fondatnental constramts of conservation
laws, the conservation of momenturn and the conservation of angular motnenm |

Angular  _  Moment of X Angular
Momentum —  Inertia Velocity
L= | X W
Linear :

— Vel
Momentum Mass X elocty
pb = m X V

The X implies simple multiplication here.



An Isolated System

An 1solated systetn mmphes a collection of matter which does not interact with the rest of the unverse
at all - and as far as we know there are really no such systems. There 15 no shield aganst gravity,
and the electromagnetic force 15 mfinte i range. But m order to focus on bastc principles, 1 13 usefil

o postulate such a system to clarfy the nature of physical laws. In particula, the conservation laws
can be presumed to be exact when referring to anisolated systetm

Conservation of Eneray: the total eneray of the systetn 5 constant,

Conservation of Motmentum: the mass times the veloctty of the center of mass 15 constant,
onservation of Angular Motmentum: The total angular momentutn of the system 8 constant
Wewton's Third Law: No net force can be generated within the system smee all mternal forces ocour

n opposng pairs. The acceleration of the center of mass 13 zZero.



Rolling Objects

m V o Inn describing the motion of rolling objects,
/ Cm Kinetic en EI9Y tmust be kept in mind that the kinetic eneray is
Q—» of rolli ng divided between linear kinetic energy and
rotational kinetic energy. Another key 13 that for
rolling without shpping, the linear veloctty of the

center of mass 15 equal to the anaular velocty
fines the radms.

Rolling down
an incline




Kinetic Energy of Rolling Object

[f an obyect 18 roling without slipping, then its kinetic energy can be expressed as the sum of the
rranslational kinetic eneroy of its center of tnass plus the rotational kinetic eneroy about the center of
mass. The angular welocity 18 of course related to the inear welocity of the center of mass, so the
eniergy can be expressed in tertns of either of thern as the problem dictates, such as i the rolling of
at object down an incline. Mote that the moment of mettia used must be the moment of mertia about
the center of mass. If it 12 known about some other amas, then the parallel ams theorem may be used
b obtan the needed moment of mertia,

]

If not slipping KE mv ‘|‘ I w

then meng g )
— O m
m _— _""-\‘.k
r Ic‘m is related to the moment of inertia

about the point of contact by the
parallel axis theorem.

(1) isrelatedto V, ifitis rolling without
slipping.




Rotational Kinetic Energy

The lunetic energy of a rotating object 12 analogous to near kinetic energy and can be expressed in
tertns of the moment of metrtia and anoular welocity. The total kinetic energy of an extended object
can be expressed as the sum of the translational kimetic energy of the center of mass and the

rotational kinetic energy about the center of mass. For a given fimed asis of rotation, the rotational
linetic energy can be expressed m the form

KE S P %

rotational 9

) V

angular velocity linear velocity
/ 1\

l 2 Linear and rotational
KE = —_— Iw kinetic energy have mv = KE;,'”,.,”-

rotational
2 \ the same form. 2/

rotational inertia translational inertia
(moment of inertia) {mass)

! m



Work-Energy Principle

2 _ 1 2
MVinal ~ 2 MVinitial

Wnet - 15
The change in the kinetic energy of
an object is equal to the net work
done on the object.



Work-Energy Principle

The work-energy principle 13 a general principle which can be appled specifically to rotating
ohiects. For pure rotation, the net worle 15 equal to the change i rotational linetic eneroy

1 ] 5
Wiher= EIW?‘—EIWF

For a constant torque, the work can be expressed as

'H — TH

and for a net torque, Newton's 2nd law for rotation gives

w.=t,.,0=I1c0

e

e

Combaning this last expression with the worlc-energy principle mives a useful relationship for
describing rotational motion.

3
.
.

W= w; +200



The expressions for rotational and hnear kinetic energy can be developed in a parallel manner from
the work-energy pninciple. Consider the following parallel between a constant torque exerted on a
flywheel with moment of inertia I and a constant force exerted on a mass m, both starting from rest.

d
F 1—=e1
—“ Work = Fd= .*:r.!f:.n::(:mzza‘=lmv2
t 2 2
Work =70 =100=1 e t=—I1w"
“7) =2 2

For the inear case, [starting from rest| the acceleration from IMNewton's second law is equal to the
final velocity dimded by the time and the average velocity 1s half the final velocity, showing that the
work done on the block gives it a kunetic energy equal to the work done. For the rotational case,
also starting from rest, the rotational work 1s 0 and the angular acceleration o given to the flywheel
1s obtamed from Newton's second law for rotation. The angular acceleration 1s equal to the final
angular velocity divided by the time and the average angular velocity 1s equal to half the final angular
velocity. It follows that the rotational kinetic energy given to the flywheel 1s equal to the work done
by the torque.




Rolling Down an Incline

In roling wathout shipping through the distance L down the incline, the height of the roling object
changes by "h". Hence the grawmtational potential energy changes by mgh. The welocity of the center
of mass depends upon the particular form of the moment of mettia

2
Moment of inertia= | — —HIFE

of sphere about 5
center of mass

PE = mgk In rolling dw:rn the incline, tije pt:_:rtent[al
energy mgh is transtormed into linear and

rotational kinetic energy.

] | )
\ KE= —mv’ +—Iw’

: 2 2




] ]
KE= —mv* +— 1’

: 2 2
The energy transformation equation is
i iy
1, 1{2 ,[|v
mgh=—myv" +—|—mr°||—
2 2195 r

which gives a velocity at the bottom of the incline Vv = \ — gh



Hoop and Cylinder Motion

(mven a race between a thin hoop and a uniform cylinder down an mclne. Which will win?

Do the relatrve masses of the hoop and cylmder aftect
the outcome?

Do the relatrve rada of the hoop and cylinder aftect the

autcote?

Eoth statt at the same height and have gramtational
potential enerey = meh. Assume that they roll without

shpping

The analysis uses angular velocity and rotational kinetic eneray. For rolling without shipping, the
inear velocty and angular veloctty are strctly proportional




(Aven arace between a thin hoop and a uniform cvlinder down an incline. "Which sl wan’Y

Clonsetwvation of eneroy gives:

FE.H:‘H;':'E'.' == KErrmr.fhm'umd + KE

1 1
mgh = Emvz +Efﬂ)2

For roling arthout shipping, oo = wr The difference
between the hoop and the cvlinder comes from thewr
different rotational mertia.

> 1 :

IJ’HJE’JF = mr If_-}:h‘”dfr= E mr -

mobnng for the velocity shows the cyvhinder to be the clear winner.

— A
vh”ﬂp = gh Vc‘yiinder — Jg 8 h




Hoop and Cylinder Motion

(rven a race between a thin hoop and a urform cylinder down an mcline, roling without shpping.
Which will win

For the hoop: For the cylinder:

g | -— o 4

|l , 1 ,qv° |,
mgh=—mv" +—|mr” |—=  mgh=—my +—
° 2 2[ ]r' : 2 22 r

-




Sliding with no rotation on
a frictionless incline.

For the hoop For the cylinder:

. i} &
mgh=—my~ mgh = Emv‘

2
Fﬁ'frﬁrm!e.s'.ﬂ' = AV ng




Q9.1

The graph shows the
angular velocity and

angular acceleration
versus time for a
rotating body. At
which of the following
times 1s the rotation
speeding up at the
greatest rate?

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

A.t=1s
B.t=2s
C.t=3s
D.t=4s

E.t=5s



A9.1

The graph shows the
angular velocity and

angular acceleration
versus time for a
rotating body. At
which of the following
times 1s the rotation
speeding up at the
greatest rate?

A.t=1s
B.t=2s
C.t=3s
D.t=4s

JE.Z‘=SS
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Q9.2

A DVD is initially at rest so that the Y Direction
line PQ on the disc’s surface is along of rotation
the +x-axis. The disc begins to turn
with a constant ¢ = 5.0 rad/s>.

At t=0.40 s, what is the angle
between the line PO and the +x-axis?

A. 0.40 rad
B. 0.80 rad
C.1.0rad
D. 2.0 rad
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A9.2

A DVD is initially at rest so that the Y Direction
line PQ on the disc’s surface is along of rotation
the +x-axis. The disc begins to turn
with a constant ¢ = 5.0 rad/s>.

At t=0.40 s, what is the angle
between the line PO and the +x-axis?

JA. 0.40 rad

B. 0.80 rad
C.1.0rad
D. 2.0 rad
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Q9.3

A DVD is rotating with an ever-
increasing speed. How do the
centripetal acceleration a_, and

rad

tangential acceleration a__
compare at points P and Q?

A. P and Q have the same a_,
and a_ .

B. O has a greater a_, and a

rad

greater a,_ than P.

C. O has a smaller a

rad

VIDEO

and a greater a,_ than P.

Direction

of rotation
-

D. P and Q have the same a_, but Q has a greater a,_ than P.
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A9.3 . : .
A DVD is rotating with an ever-

increasing speed. How do the
centripetal acceleration a_, and

y Direction
of rotation

rad

tangential acceleration a__

compare at points P and Q?

A. P and Q have the same a_, vIoEo

and a_ .

J B. O has a greater a_, and a
greater a,_ than P.

C. Q has a smaller a_, and a greater a__ than P.

rad

D. P and Q have the same a_, but Q has a greater a,_ than P.
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Q9.4

Compared to a gear tooth on the
rear sprocket (on the left, of
small radius) of a bicycle, a gear
tooth on the front sprocket (on
the right, of large radius) has

Front sprocket

A. a faster linear speed and a faster angular speed.
B. the same linear speed and a faster angular speed.
C. a slower linear speed and the same angular speed.
D. the same linear speed and a slower angular speed.

E. none of the above
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A9.4

Compared to a gear tooth on the
rear sprocket (on the left, of
small radius) of a bicycle, a gear
tooth on the front sprocket (on
the right, of large radius) has

Front sprocket

A. a faster linear speed and a favstér —ahgular speed.

B. the same linear speed and a faster angular speed.

C. a slower linear speed and the same angular speed.
J D. the same linear speed and a slower angular speed.

E. none of the above
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Q9.5

You want to double the radius of a rotating solid sphere
while keeping its kinetic energy constant. (The mass
does not change.) To do this, the final angular velocity
of the sphere must be

A. 4 times its initial value.

B. twice 1ts 1nitial value.

C. the same as its 1nitial value.
D. 1/2 of 1ts 1nitial value.

E. 1/4 of its initial value.
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A9.5

You want to double the radius of a rotating solid sphere
while keeping its kinetic energy constant. (The mass

does not change.) To do this, the final angular velocity
of the sphere must be

A. 4 times its initial value.
B. twice its 1nitial value.

C. the same as its 1nitial value.

J D. 1/2 of its initial value.

E. 1/4 of its initial value.
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Q9.6

The three objects (&) Hollow cylinder (f) Solid cylinder ® Tl
shown here all have /= M@’ + &) I= 3 MR I = MR?
the same mass M

and radius R. Each

object 1s rotating

about its axis of R, = Y . R
symmetry (shown | |

in blue). All three A. thin-walled hollow cylinder
objects have the B. solid cylinder

same rotational
kinetic energy.

Whi(fh one 1s D. two or more of these are tied
rotating fastest? for fastest

C. thin-walled hollow sphere
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A9.6

The three objects ()il ffindee (f) Solid cylinder Tt
shown here all have /= M@’ + &) I= 3 MR I = MR?
the same mass M

and radius R. Each

object 1s rotating

about 1ts axis of Ry = T, S R
symmetry (shown | |

in blue). All three A. thin-walled hollow cylinder
objects have the J B. solid cylinder

same rotational
kinetic energy.

Whi(fh one 1s D. two or more of these are tied
rotating fastest? for fastest

C. thin-walled hollow sphere
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Q9.7

A thin, very light wire 1s wrapped

around a drum that 1s free to rotate.

The free end of the wire 1s attached Drum
to a ball of mass m. The drum has

the same mass m. Its radius is R and

its moment of inertia is I = (1/2)mR>.

As the ball falls, the drum spins.

At an instant that the ball has
translational kinetic energy K, the O
drum has rotational kinetic energy "

A. K. B. 2K. C. K/2. D. none of these
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A9.7

A thin, very light wire 1s wrapped

around a drum that 1s free to rotate.

The free end of the wire 1s attached Drum
to a ball of mass m. The drum has

the same mass m. Its radius is R and

its moment of inertia is I = (1/2)mR>.

As the ball falls, the drum spins.

At an instant that the ball has
translational kinetic energy K, the O
drum has rotational kinetic energy "

A. K. B. 2K. J C. K/2. D. none of these
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