| Fizik Bölümü / PHYSICS / | | | | | | | |---|---|----------------------|----------------|------------------|---------------|-----------| | Course Code C | ourse Name | Teorical | Practice | Laboratory | Credits | ECTS | | FZK-4018 A | strophphysics II | 2.00 | 2.00 | 0.00 | 3.00 | 7.00 | | Course Detail | | | | | | | | Course Language | : Turkish | | | | | | | Qualification Degree | : Bachelor | | | | | | | Course Type | : Optional | | | | | | | Preconditions | : Not | | | | | | | Objectives of the Course | : An examination of the internal structure and evolution of the stars is aimed in th | is course. | | | | | | Course Contents | : This course provides the course of Astrophysics I. The topics of this course are
and The Line Absorption Coefficients, Convective Instability, Theory of Convec
Equations, Physical Interpretation of The Hayashi Line, Models For Main Sequ
Observational Tests of Stellar Evolution: White Dwarfs and Neutron Stars. | tive Energy Transpor | t, Energy Gene | ration in Stars, | Basic Stellar | Structure | | Recommended or Required Reading | : Erica Böhm Vitense, 1992, Introduction to Stellar Astrophysics (Volume 1,2,3), 1983, Black holes, white dwarfs, and neutron stars: The Physics of Compact Striginia, 2004, Stellar interiors: physical principles, structure, and evolution (2r | tars, USA, John Wile | y&Sons Inc. Ha | | • | • | | Planned Learning Activities
Teaching Methods | and : Practice in course and homeworks. | | | | | | | Recommended Optional Programme Components | : Repetition of Astrophysics I knowledge is helpful | | | | | | | Instructors | : Assoc. Prof. Dr. Filiz Kahraman Aliçavuş | | | | | | | Instructor's Assistants | : - | | | | | | | Presentation Of Course | : Online due to pandemic | | | | | | ## Course Outcomes ## Upon the completion of this course a student : 1 Explain the hydrostatic equilibrium which occurs in the stellar interiors. $2\,\mbox{Discuss}$ the consequences of the theorem explaining the Virial theorem. 3 Discuss the consequences of the equilibrium defining the thermal equilibrium in stars. $4\,\mbox{Write}$ the Schwarzschild criterion for convective instability. $5\,\mbox{Explain}$ the energy transport mechanism by convection in the stellar interiors. $\,$ 6 Summarize the solar neutrino problem reading the different resources. $7\ \mbox{Explain}$ each stage of evolution of low and massive stars. ## Preconditions | Course Code | Course Name | Teorical | Practice | Laboratory | Credits | ECTS | |-------------|-------------|----------|----------|------------|---------|------| | | | | | | | | | Weekly C | ontents | | | | | |----------|--|--|------------|------------------|------------------| | | Teorical | Practice | Laboratory | Preparation Info | Teaching Methods | | 1.Week | *Hydrostatic Equilibrium | *Hydrostatic Equilibrium | | | | | 2.Week | *Thermal Equilibrium | *Thermal Equilibrium | | | | | 3.Week | *Electron Scattering and The Line
Absorption Coefficients | *Electron Scattering and The Line
Absorption Coefficients | | | | | 4.Week | *Convective Instability | *Convective Instability | | | | | 5.Week | *Theory of Convective Energy
Transport | *Theory of Convective Energy
Transport | | | | | 6.Week | *Theory of Convective Energy
Transport | *Theory of Convective Energy
Transport | | | | | 7.Week | *Energy Generation in Stars | *Energy Generation in Stars | | | | | 8.Week | *Midterm Exam | | | | | | 9.Week | *Basic Stellar Structure Equations | *Basic Stellar Structure Equations | | | | | 10.Week | *Physical Interpretation of The
Hayashi Line | *Physical Interpretation of The
Hayashi Line | | | | | 11.Week | *Models For Main Sequence Stars | *Models For Main Sequence Stars | | | | | 12.Week | *Evolution of Low Mass Stars | *Evolution of Low Mass Stars | | | | | 13.Week | *Evolution of Massive Stars | *Evolution of Massive Stars | | | | | 14.Week | *Observational Tests of Stellar
Evolution:White Dwarfs and Neutron
Stars | *Observational Tests of Stellar
Evolution:White Dwarfs and Neutron
Stars | | | | | Assesment Methods % | |---------------------| | 1 Final : 60.000 | | 2 Vize: 40.000 | | ECTS Workload | | | | |---------------------------------|-------|------------|-----------------| | Activities | Count | Time(Hour) | Sum of Workload | | Vize | 1 | 2.00 | 2.00 | | Attending lectures | 14 | 4.00 | 56.00 | | Application / Practice | 2 | 4.00 | 8.00 | | Individual study before lecture | 7 | 11.00 | 77.00 | | Preparation for midterm | 1 | 25.00 | 25.00 | | Preparation for final | 1 | 25.00 | 25.00 | | Final Exam | 1 | 2.00 | 2.00 | | | | | Total: 195.00 | | | | 0 (14/ 11 | | Sum of Workload / 30 (Hour): 6 ECTS: 7.00 | Program And OutcomeRelation | | |-----------------------------|--| |-----------------------------|--| | | P.O. 1 | 1 P.O. 2 | P.O. 3 | P.O. 4 | P.O. 5 | P.O. 6 | P.O. 7 | P.O. 8 | P.O. 9 | P.O. 10 | P.O. 11 | P.O. 12 | P.O. 13 | P.O. 14 | P.O. 15 | P.O. 16 | P.O. 17 | P.O. 18 | P.O. 19 | P.O. 20 | P.O. 21 | P.O. 22 | P.O. 23 | P.O. 24 | |--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | L.O. 1 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L.O. 2 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L.O. 3 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L.O. 4 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L.O. 5 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L.O. 6 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L.O. 7 | 3 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | ▶ | | P.O. ' | 1 P.O. 2 | P.O. 3 | P.O. 4 | P.O. 5 | P.O. 6 | P.O. 7 | P.O. 8 | P.O. 9 | P.O. 10 | P.O. 11 | P.O. 12 | P.O. 13 | P.O. 14 | P.O. 15 | P.O. 16 | P.O. 17 | P.O. 18 | P.O. 19 | P.O. 20 | P.O. 21 | P.O. 22 | P.O. 23 | P.O. 24 | P.O. 2 | |--------|----------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------| | 3 | 4 | 4 | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | ▶ |